

Table of Contents

Preface . xiii

1. Introduction: Hacking on Twitter Data . 1
Installing Python Development Tools 1
Collecting and Manipulating Twitter Data 3

Tinkering with Twitter’s API 4
Frequency Analysis and Lexical Diversity 7
Visualizing Tweet Graphs 14
Synthesis: Visualizing Retweets with Protovis 15

Closing Remarks 17

2. Microformats: Semantic Markup and Common Sense Collide 19
XFN and Friends 19
Exploring Social Connections with XFN 22

A Breadth-First Crawl of XFN Data 23
Geocoordinates: A Common Thread for Just About Anything 30

Wikipedia Articles + Google Maps = Road Trip? 30
Slicing and Dicing Recipes (for the Health of It) 35
Collecting Restaurant Reviews 37
Summary 40

3. Mailboxes: Oldies but Goodies . 41
mbox: The Quick and Dirty on Unix Mailboxes 42
mbox + CouchDB = Relaxed Email Analysis 48

Bulk Loading Documents into CouchDB 51
Sensible Sorting 52
Map/Reduce-Inspired Frequency Analysis 55
Sorting Documents by Value 61
couchdb-lucene: Full-Text Indexing and More 63

Threading Together Conversations 67
Look Who’s Talking 73

ix

Visualizing Mail “Events” with SIMILE Timeline 77
Analyzing Your Own Mail Data 80

The Graph Your (Gmail) Inbox Chrome Extension 81
Closing Remarks 82

4. Twitter: Friends, Followers, and Setwise Operations . 83
RESTful and OAuth-Cladded APIs 84

No, You Can’t Have My Password 85
A Lean, Mean Data-Collecting Machine 88

A Very Brief Refactor Interlude 91
Redis: A Data Structures Server 92
Elementary Set Operations 94
Souping Up the Machine with Basic Friend/Follower Metrics 96
Calculating Similarity by Computing Common Friends and Followers 102
Measuring Influence 103

Constructing Friendship Graphs 108
Clique Detection and Analysis 110
The Infochimps “Strong Links” API 114
Interactive 3D Graph Visualization 116

Summary 117

5. Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet 119
Pen : Sword :: Tweet : Machine Gun (?!?) 119
Analyzing Tweets (One Entity at a Time) 122

Tapping (Tim’s) Tweets 125
Who Does Tim Retweet Most Often? 138
What’s Tim’s Influence? 141
How Many of Tim’s Tweets Contain Hashtags? 144

Juxtaposing Latent Social Networks (or #JustinBieber Versus #TeaParty) 147
What Entities Co-Occur Most Often with #JustinBieber and #TeaParty
Tweets? 148
On Average, Do #JustinBieber or #TeaParty Tweets Have More
Hashtags? 153
Which Gets Retweeted More Often: #JustinBieber or #TeaParty? 154
How Much Overlap Exists Between the Entities of #TeaParty and
#JustinBieber Tweets? 156

Visualizing Tons of Tweets 158
Visualizing Tweets with Tricked-Out Tag Clouds 158
Visualizing Community Structures in Twitter Search Results 162

Closing Remarks 166

6. LinkedIn: Clustering Your Professional Network for Fun (and Profit?) 167
Motivation for Clustering 168

x | Table of Contents

Clustering Contacts by Job Title 172
Standardizing and Counting Job Titles 172
Common Similarity Metrics for Clustering 174
A Greedy Approach to Clustering 177
Hierarchical and k-Means Clustering 185

Fetching Extended Profile Information 188
Geographically Clustering Your Network 193

Mapping Your Professional Network with Google Earth 193
Mapping Your Professional Network with Dorling Cartograms 198

Closing Remarks 198

7. Google Buzz: TF-IDF, Cosine Similarity, and Collocations . 201
Buzz = Twitter + Blogs (???) 202
Data Hacking with NLTK 205
Text Mining Fundamentals 209

A Whiz-Bang Introduction to TF-IDF 209
Querying Buzz Data with TF-IDF 215

Finding Similar Documents 216
The Theory Behind Vector Space Models and Cosine Similarity 217
Clustering Posts with Cosine Similarity 219
Visualizing Similarity with Graph Visualizations 222

Buzzing on Bigrams 224
How the Collocation Sausage Is Made: Contingency Tables and Scoring
Functions 228

Tapping into Your Gmail 231
Accessing Gmail with OAuth 232
Fetching and Parsing Email Messages 233

Before You Go Off and Try to Build a Search Engine… 235
Closing Remarks 237

8. Blogs et al.: Natural Language Processing (and Beyond) . 239
NLP: A Pareto-Like Introduction 239

Syntax and Semantics 240
A Brief Thought Exercise 241

A Typical NLP Pipeline with NLTK 242
Sentence Detection in Blogs with NLTK 245
Summarizing Documents 250

Analysis of Luhn’s Summarization Algorithm 256
Entity-Centric Analysis: A Deeper Understanding of the Data 258

Quality of Analytics 267
Closing Remarks 269

Table of Contents | xi

9. Facebook: The All-in-One Wonder . 271
Tapping into Your Social Network Data 272

From Zero to Access Token in Under 10 Minutes 272
Facebook’s Query APIs 278

Visualizing Facebook Data 289
Visualizing Your Entire Social Network 289
Visualizing Mutual Friendships Within Groups 301
Where Have My Friends All Gone? (A Data-Driven Game) 304
Visualizing Wall Data As a (Rotating) Tag Cloud 309

Closing Remarks 311

10. The Semantic Web: A Cocktail Discussion . 313
An Evolutionary Revolution? 313
Man Cannot Live on Facts Alone 315

Open-World Versus Closed-World Assumptions 315
Inferencing About an Open World with FuXi 316

Hope 319

Index . 321

xii | Table of Contents

Preface

The Web is more a social creation than a technical one.
I designed it for a social effect—to help people work

together—and not as a technical toy. The ultimate goal
of the Web is to support and improve our weblike exis-
tence in the world. We clump into families, associations,
and companies. We develop trust across the miles and

distrust around the corner.

—Tim Berners-Lee, Weaving the Web (Harper)

To Read This Book?
If you have a basic programming background and are interested in insight surrounding
the opportunities that arise from mining and analyzing data from the social web, you’ve
come to the right place. We’ll begin getting our hands dirty after just a few more pages
of frontmatter. I’ll be forthright, however, and say upfront that one of the chief com-
plaints you’re likely to have about this book is that all of the chapters are far too short.
Unfortunately, that’s always the case when trying to capture a space that’s evolving
daily and is so rich and abundant with opportunities. That said, I’m a fan of the “80-20
rule”, and I sincerely believe that this book is a reasonable attempt at presenting the
most interesting 20 percent of the space that you’d want to explore with 80 percent of
your available time.

This book is short, but it does cover a lot of ground. Generally speaking, there’s a little
more breadth than depth, although where the situation lends itself and the subject
matter is complex enough to warrant a more detailed discussion, there are a few deep
dives into interesting mining and analysis techniques. The book was written so that
you could have the option of either reading it from cover to cover to get a broad primer
on working with social web data, or pick and choose chapters that are of particular
interest to you. In other words, each chapter is designed to be bite-sized and fairly
standalone, but special care was taken to introduce material in a particular order so
that the book as a whole is an enjoyable read.

xiii

Social networking websites such as Facebook, Twitter, and LinkedIn have transitioned
from fad to mainstream to global phenomena over the last few years. In the first quarter
of 2010, the popular social networking site Facebook surpassed Google for the most
page visits,* confirming a definite shift in how people are spending their time online.
Asserting that this event indicates that the Web has now become more a social milieu
than a tool for research and information might be somewhat indefensible; however,
this data point undeniably indicates that social networking websites are satisfying some
very basic human desires on a massive scale in ways that search engines were never
designed to fulfill. Social networks really are changing the way we live our lives on and
off the Web,† and they are enabling technology to bring out the best (and sometimes
the worst) in us. The explosion of social networks is just one of the ways that the gap
between the real world and cyberspace is continuing to narrow.

Generally speaking, each chapter of this book interlaces slivers of the social web along
with data mining, analysis, and visualization techniques to answer the following kinds
of questions:

• Who knows whom, and what friends do they have in common?

• How frequently are certain people communicating with one another?

• How symmetrical is the communication between people?

• Who are the quietest/chattiest people in a network?

• Who are the most influential/popular people in a network?

• What are people chatting about (and is it interesting)?

The answers to these types of questions generally connect two or more people together
and point back to a context indicating why the connection exists. The work involved
in answering these kinds of questions is only the beginning of more complex analytic
processes, but you have to start somewhere, and the low-hanging fruit is surprisingly
easy to grasp, thanks to well-engineered social networking APIs and open source
toolkits.

Loosely speaking, this book treats the social web‡ as a graph of people, activities, events,
concepts, etc. Industry leaders such as Google and Facebook have begun to increasingly
push graph-centric terminology rather than web-centric terminology as they simulta-
neously promote graph-based APIs. In fact, Tim Berners-Lee has suggested that perhaps
he should have used the term Giant Global Graph (GGG) instead of World Wide Web
(WWW), because the terms “web” and “graph” can be so freely interchanged in the
context of defining a topology for the Internet. Whether the fullness of Tim Berners-

* See the opening paragraph of Chapter 9.

† Mark Zuckerberg, the creator of Facebook, was named Person of the Year for 2010 by Time magazine (http:
//www.time.com/time/specials/packages/article/0,28804,2036683_2037183_2037185,00.html)

‡ See http://journal.planetwork.net/article.php?lab=reed0704 for another perspective on the social web that
focuses on digital identities.

xiv | Preface

Lee’s original vision will ever be realized remains to be seen, but the Web as we know
it is getting richer and richer with social data all the time. When we look back years
from now, it may well seem obvious that the second- and third-level effects created by
an inherently social web were necessary enablers for the realization of a truly semantic
web. The gap between the two seems to be closing.

Or Not to Read This Book?
Activities such as building your own natural language processor from scratch, venturing
far beyond the typical usage of visualization libraries, and constructing just about any-
thing state-of-the-art are not within the scope of this book. You’ll be really disappointed
if you purchase this book because you want to do one of those things. However, just
because it’s not realistic or our goal to capture the holy grail of text analytics or record
matching in a mere few hundred pages doesn’t mean that this book won’t enable you
to attain reasonable solutions to hard problems, apply those solutions to the social web
as a domain, and have a lot of fun in the process. It also doesn’t mean that taking a very
active interest in these fascinating research areas wouldn’t potentially be a great idea
for you to consider. A short book like this one can’t do much beyond whetting your
appetite and giving you enough insight to go out and start making a difference some-
where with your newly found passion for data hacking.

Maybe it’s obvious in this day and age, but another important item of note is that this
book generally assumes that you’re connected to the Internet. This wouldn’t be a great
book to take on vacation with you to a remote location, because it contains many
references that have been hyperlinked, and all of the code examples are hyperlinked
directly to GitHub, a very social Git repository that will always reflect the most up-to-
date example code available. The hope is that social coding will enhance collaboration
between like-minded folks such as ourselves who want to work together to extend the
examples and hack away at interesting problems. Hopefully, you’ll fork, extend, and
improve the source—and maybe even make some new friends along the way. Readily
accessible sources of online information such as API docs are also liberally hyperlinked,
and it is assumed that you’d rather look them up online than rely on inevitably stale
copies in this printed book.

The official GitHub repository that maintains the latest and greatest
bug-fixed source code for this book is http://github.com/ptwobrussell/
Mining-the-Social-Web. The official Twitter account for this book is
@SocialWebMining.

This book is also not recommended if you need a reference that gets you up to speed
on distributed computing platforms such as sharded MySQL clusters or NoSQL tech-
nologies such as Hadoop or Cassandra. We do use some less-than-conventional storage
technologies such as CouchDB and Redis, but always within the context of running on

Preface | xv

a single machine, and because they work well for the problem at hand. However, it
really isn’t that much of a stretch to port the examples into distributed technologies if
you possess sufficient motivation and need the horizontal scalability. A strong recom-
mendation is that you master the fundamentals and prove out your thesis in a slightly
less complex environment first before migrating to an inherently more complex dis-
tributed system—and then be ready to make major adjustments to your algorithms to
make them performant once data access is no longer local. A good option to investigate
if you want to go this route is Dumbo. Stay tuned to this book’s Twitter account
(@SocialWebMining) for extended examples that involve Dumbo.

This book provides no advice whatsoever about the legal ramifications of what you
may decide to do with the data that’s made available to you from social networking
sites, although it does sincerely attempt to comply with the letter and spirit of the terms
governing the particular sites that are mentioned. It may seem unfortunate that many
of the most popular social networking sites have licensing terms that prohibit the use
of their data outside of their platforms, but at the moment, it’s par for the course. Most
social networking sites are like walled gardens, but from their standpoint (and the
standpoint of their investors) a lot of the value these companies offer currently relies
on controlling the platforms and protecting the privacy of their users; it’s a tough bal-
ance to maintain and probably won’t be all sorted out anytime soon.

A final and much lesser caveat is that this book does slightly favor a *nix environ-
ment,§ in that there are a select few visualizations that may give Windows users trouble.
Whenever this is known to be a problem, however, advice is given on reasonable al-
ternatives or workarounds, such as firing up a VirtualBox to run the example in a Linux
environment. Fortunately, this doesn’t come up often, and the few times it does you
can safely ignore those sections and move on without any substantive loss of reading
enjoyment.

Tools and Prerequisites
The only real prerequisites for this book are that you need to be motivated enough to
learn some Python and have the desire to get your hands (really) dirty with social data.
None of the techniques or examples in this book require significant background knowl-
edge of data analysis, high performance computing, distributed systems, machine
learning, or anything else in particular. Some examples involve constructs you may not
have used before, such as thread pools, but don’t fret—we’re programming in Python.
Python’s intuitive syntax, amazing ecosystem of packages for data manipulation, and
core data structures that are practically JSON make it an excellent teaching tool that’s
powerful yet also very easy to get up and running. On other occasions we use some
packages that do pretty advanced things, such as processing natural language, but we’ll

§ *nix is a term used to refer to a Linux/Unix environment, which is basically synonymous with non-Windows
at this point in time.

xvi | Preface

approach these from the standpoint of using the technology as an application pro-
grammer. Given the high likelihood that very similar bindings exist for other program-
ming languages, it should be a fairly rote exercise to port the code examples should you
so desire. (Hopefully, that’s exactly the kind of thing that will happen on GitHub!)
Beyond the previous explanation, this book makes no attempt to justify the selection
of Python or apologize for using it, because it’s a very suitable tool for the job. If you’re
new to programming or have never seen Python syntax, skimming ahead a few pages
should hopefully be all the confirmation that you need. Excellent documentation is
available online, and the official Python tutorial is a good place to start if you’re looking
for a solid introduction.

This book attempts to introduce a broad array of useful visualizations across a variety
of visualization tools and toolkits, ranging from consumer staples like spreadsheets to
industry staples like Graphviz, to bleeding-edge HTML5 technologies such as Proto-
vis. A reasonable attempt has been made to introduce a couple of new visualizations
in each chapter, but in a way that follows naturally and makes sense. You’ll need to be
comfortable with the idea of building lightweight prototypes from these tools. That
said, most of the visualizations in this book are little more than small mutations on out-
of-the-box examples or projects that minimally exercise the APIs, so as long as you’re
willing to learn, you should be in good shape.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Indicates program listings, and is used within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also
occasionally used for emphasis in code listings.

Constant width italic
Shows text that should be replaced with user-supplied values or values determined
by context.

This icon signifies a tip, suggestion, or general note.

Preface | xvii

This icon indicates a warning or caution.

Using Code Examples
Most of the numbered examples in the following chapters are available for download
at GitHub at https://github.com/ptwobrussell/Mining-the-Social-Web—the official code
repository for this book. You are encouraged to monitor this repository for the latest
bug-fixed code as well as extended examples by the author and the rest of the social
coding community.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Mining the Social Web by Matthew A.
Russell. Copyright 2011 Matthew Russell, 978-1-449-38834-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

xviii | Preface

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449388348/

Readers can request general help from the author and publisher through GetSatisfac-
tion at:

http://getsatisfaction.com/oreilly

Readers may also file tickets for the sample code—as well as anything else in the book—
through GitHub’s issue tracker at:

http://github.com/ptwobrussell/Mining-the-Social-Web/issues

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
To say the least, writing a technical book takes a ridiculous amount of sacrifice. On the
home front, I gave up more time with my wife, Baseeret, and daughter, Lindsay Belle,
than I’m proud to admit. Thanks most of all to both of you for loving me in spite of
my ambitions to somehow take over the world one day. (It’s just a phase, and I’m really
trying to grow out of it—honest.)

I sincerely believe that the sum of your decisions gets you to where you are in life
(especially professional life), but nobody could ever complete the journey alone, and
it’s an honor give credit where credit is due. I am truly blessed to have been in the
company of some of the brightest people in the world while working on this book,
including a technical editor as smart as Mike Loukides, a production staff as talented
as the folks at O’Reilly, and an overwhelming battery of eager reviewers as amazing as
everyone who helped me to complete this book. I especially want to thank Abe Music,

Preface | xix

Pete Warden, Tantek Celik, J. Chris Anderson, Salvatore Sanfilippo, Robert Newson,
DJ Patil, Chimezie Ogbuji, Tim Golden, Brian Curtin, Raffi Krikorian, Jeff Hammer-
bacher, Nick Ducoff, and Cameron Marlowe for reviewing material or making partic-
ularly helpful comments that absolutely shaped its outcome for the best. I’d also like
to thank Tim O’Reilly for graciously allowing me to put some of his Twitter and Google
Buzz data under the microscope in Chapters 4, 5, and 7; it definitely made those chap-
ters much more interesting to read than they otherwise would have been. It would be
impossible to recount all of the other folks who have directly or indirectly shaped my
life or the outcome of this book.

Finally, thanks to you for giving this book a chance. If you’re reading this, you’re at
least thinking about picking up a copy. If you do, you’re probably going to find some-
thing wrong with it despite my best efforts; however, I really do believe that, in spite
of the few inevitable glitches, you’ll find it an enjoyable way to spend a few evenings/
weekends and you’ll manage to learn a few things somewhere along the line.

xx | Preface

CHAPTER 1

Introduction: Hacking on Twitter Data

Although we could get started with an extended discussion of specific social networking
APIs, schemaless design, or many other things, let’s instead dive right into some intro-
ductory examples that illustrate how simple it can be to collect and analyze some social
web data. This chapter is a drive-by tutorial that aims to motivate you and get you
thinking about some of the issues that the rest of the book revisits in greater detail.
We’ll start off by getting our development environment ready and then quickly move
on to collecting and analyzing some Twitter data.

Installing Python Development Tools
The example code in this book is written in Python, so if you already have a recent
version of Python and easy_install on your system, you obviously know your way
around and should probably skip the remainder of this section. If you don’t already
have Python installed, the bad news is that you’re probably not already a Python hacker.
But don’t worry, because you will be soon; Python has a way of doing that to people
because it is easy to pick up and learn as you go along. Users of all platforms can find
instructions for downloading and installing Python at http://www.python.org/down
load/, but it is highly recommended that Windows users install ActivePython, which
automatically adds Python to your path at the Windows Command Prompt (henceforth
referred to as a “terminal”) and comes with easy_install, which we’ll discuss in just a
moment. The examples in this book were authored in and tested against the latest
Python 2.7 branch, but they should also work fine with other relatively up-to-date
versions of Python. At the time this book was written, Python Version 2 is still the status
quo in the Python community, and it is recommended that you stick with it unless you
are confident that all of the dependencies you’ll need have been ported to Version 3,
and you are willing to debug any idiosyncrasies involved in the switch.

Once Python is installed, you should be able to type python in a terminal to spawn an
interpreter. Try following along with Example 1-1.

1

Example 1-1. Your very first Python interpreter session

>>> print "Hello World"
Hello World
>>> #this is a comment
...
>>> for i in range(0,10): # a loop
... print i, # the comma suppresses line breaks
...
0 1 2 3 4 5 6 7 8 9
>>> numbers = [i for i in range(0,10)] # a list comprehension
>>> print numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> if 10 in numbers: # conditional logic
... print True
... else:
... print False
...
False

One other tool you’ll want to have on hand is easy_install,* which is similar to a
package manager on Linux systems; it allows you to effortlessly install Python packages
instead of downloading, building, and installing them from source. You can download
the latest version of easy_install from http://pypi.python.org/pypi/setuptools, where
there are specific instructions for each platform. Generally speaking, *nix users will
want to sudo easy_install so that modules are written to Python’s global installation
directories. It is assumed that Windows users have taken the advice to use ActivePy-
thon, which automatically includes easy_install as part of its installation.

Windows users might also benefit from reviewing the blog post
“Installing easy_install…could be easier”, which discusses some com-
mon problems related to compiling C code that you may encounter
when running easy_install.

Once you have properly configured easy_install, you should be able to run the fol-
lowing command to install NetworkX—a package we’ll use throughout the book for
building and analyzing graphs—and observe similar output:

$ easy_install networkx
Searching for networkx

...truncated output...

Finished processing dependencies for networkx

* Although the examples in this book use the well-known easy_install, the Python community has slowly
been gravitating toward pip, another build tool you should be aware of and that generally “just works” with
any package that can be easy_install’d.

2 | Chapter 1: Introduction: Hacking on Twitter Data

With NetworkX installed, you might think that you could just import it from the in-
terpreter and get right to work, but occasionally some packages might surprise you.
For example, suppose this were to happen:

>>> import networkx
Traceback (most recent call last):

... truncated output ...

ImportError: No module named numpy

Whenever an ImportError happens, it means there’s a missing package. In this illus-
tration, the module we installed, networkx, has an unsatisfied dependency called
numpy, a highly optimized collection of tools for scientific computing. Usually, another
invocation of easy_install fixes the problem, and this situation is no different. Just
close your interpreter and install the dependency by typing easy_install numpy in the
terminal:

$ easy_install numpy
Searching for numpy

...truncated output...

Finished processing dependencies for numpy

Now that numpy is installed, you should be able to open up a new interpreter, import
networkx, and use it to build up graphs. Example 1-2 demonstrates.

Example 1-2. Using NetworkX to create a graph of nodes and edges

>>> import networkx
>>> g=networkx.Graph()
>>> g.add_edge(1,2)
>>> g.add_node("spam")
>>> print g.nodes()
[1, 2, 'spam']
>>> print g.edges()
[(1, 2)]

At this point, you have some of your core Python development tools installed and are
ready to move on to some more interesting tasks. If most of the content in this section
has been a learning experience for you, it would be worthwhile to review the official
Python tutorial online before proceeding further.

Collecting and Manipulating Twitter Data
In the extremely unlikely event that you don’t know much about Twitter yet, it’s a real-
time, highly social microblogging service that allows you to post short messages of 140
characters or less; these messages are called tweets. Unlike social networks like Face-
book and LinkedIn, where a connection is bidirectional, Twitter has an asymmetric
network infrastructure of “friends” and “followers.” Assuming you have a Twitter

Collecting and Manipulating Twitter Data | 3

account, your friends are the accounts that you are following and your followers are
the accounts that are following you. While you can choose to follow all of the users
who are following you, this generally doesn’t happen because you only want your Home
Timeline† to include tweets from accounts whose content you find interesting. Twitter
is an important phenomenon from the standpoint of its incredibly high number of users,
as well as its use as a marketing device and emerging use as a transport layer for third-
party messaging services. It offers an extensive collection of APIs, and although you
can use a lot of the APIs without registering, it’s much more interesting to build up and
mine your own network. Take a moment to review Twitter’s liberal terms of service,
API documentation, and API rules, which allow you to do just about anything you
could reasonably expect to do with Twitter data before doing any heavy-duty devel-
opment. The rest of this book assumes that you have a Twitter account and enough
friends/followers that you have data to mine.

The official Twitter account for this book is @SocialWebMining.

Tinkering with Twitter’s API
A minimal wrapper around Twitter’s web API is available through a package called
twitter (http://github.com/sixohsix/twitter) can be installed with easy_install per the
norm:

$ easy_install twitter
Searching for twitter

...truncated output...

Finished processing dependencies for twitter

The package also includes a handy command-line utility and IRC bot, so after installing
the module you should be able to simply type twitter in a shell to get a usage screen
about how to use the command-line utility. However, we’ll focus on working within
the interactive Python interpreter. We’ll work though some examples, but note that
you can always skim the documentation by running pydoc from the terminal. *nix users
can simply type pydoc twitter.Twitter to view the documentation on the Twitter class,
while Windows users need to type python -mpydoc twitter.Twitter. If you find yourself
reviewing the documentation for certain modules often, you can elect to pass the -w
option to pydoc and write out an HTML page that you can save and bookmark in your
browser. It’s also worth knowing that running pydoc on a module or class brings up the
inline documentation in the same way that running the help() command in the inter-
preter would. Try typing help(twitter.Twitter) in the interpreter to see for yourself.

† http://support.twitter.com/entries/164083-what-is-a-timeline

4 | Chapter 1: Introduction: Hacking on Twitter Data

Without further ado, let’s find out what people are talking about by inspecting the
trends available to us through Twitter’s search API. Let’s fire up the interpreter and
initiate a search. Try following along with Example 1-3, and use the help() function as
needed to try to answer as many of your own questions as possible before proceeding.

Example 1-3. Retrieving Twitter search trends

>>> import twitter
>>> twitter_search = twitter.Twitter(domain="search.twitter.com")
>>> trends = twitter_search.trends()
>>> [trend['name'] for trend in trends['trends']]
[u'#ZodiacFacts', u'#nowplaying', u'#ItsOverWhen', u'#Christoferdrew',
u'Justin Bieber', u'#WhatwouldItBeLike', u'#Sagittarius', u'SNL', u'#SurveySays',
u'#iDoit2']

Since you’re probably wondering, the pattern for using the twitter module is simple
and predictable: instantiate the Twitter class with a base URL and then invoke methods
on the object that correspond to URL contexts. For example, twit
ter_search.trends() initiates an HTTP call to GET http://search.twitter.com/trends
.json, which you could type into your web browser to get the same set of results. As
further context for the previous interpreter session, this chapter was originally drafted
on a Saturday night, so it’s not a coincidence that the trend SNL (Saturday Night
Live, a popular comedy show that airs in the United States) appears in the list. Now
might be a good time to go ahead and bookmark the official Twitter API documenta-
tion since you’ll be referring to it quite frequently.

Given that SNL is trending, the next logical step might be to grab some search results
about it by using the search API to search for tweets containing that text and then print
them out in a readable way as a JSON structure. Example 1-4 illustrates.

Example 1-4. Paging through Twitter search results

>>> search_results = []
>>> for page in range(1,6):
... search_results.append(twitter_search.search(q="SNL", rpp=100, page=page))

The code fetches and stores five consecutive batches (pages) of results for a query (q)
of SNL, with 100 results per page (rpp). It’s again instructive to observe that the equiv-
alent REST query‡ that we execute in the loop is of the form http://search.twitter.com/
search.json?&q=SNL&rpp=100&page=1. The trivial mapping between the REST API
and the twitter module makes it very simple to write Python code that interacts with
Twitter services. After executing the search, the search_results list contains five
objects, each of which is a batch of 100 results. You can print out the results in a readable
way for inspection by using the json package that comes built-in as of Python Version
2.6, as shown in Example 1-5.

‡ If you’re not familiar with REST, see the sidebar “RESTful Web Services” on page 49 in Chapter 7 for a
brief explanation.

Collecting and Manipulating Twitter Data | 5

Example 1-5. Pretty-printing Twitter data as JSON

>>> import json
>>> print json.dumps(search_results, sort_keys=True, indent=1)
[
 {
 "completed_in": 0.088122000000000006,
 "max_id": 11966285265,
 "next_page": "?page=2&max_id=11966285265&rpp=100&q=SNL",
 "page": 1,
 "query": "SNL",
 "refresh_url": "?since_id=11966285265&q=SNL",
 "results": [
 {
 "created_at": "Sun, 11 Apr 2010 01:34:52 +0000",
 "from_user": "bieber_luv2",
 "from_user_id": 106998169,
 "geo": null,
 "id": 11966285265,
 "iso_language_code": "en",
 "metadata": {
 "result_type": "recent"
 },
 "profile_image_url": "http://a1.twimg.com/profile_images/809471978/DSC00522...",
 "source": "web",
 "text": " ...truncated... im nt gonna go to sleep happy unless i see @justin...",
 "to_user_id": null
 }
 ... output truncated - 99 more tweets ...

],
 "results_per_page": 100,
 "since_id": 0
 },

 ... output truncated - 4 more pages ...
]

Be advised that as of late 2010, the from_user_id field in each search
result does not correspond to the tweet author’s actual Twitter id. See
Twitter API Issue #214 for details. This defect is of no consequence to
example code in this chapter, but it is important to note in case you start
getting creative (which is highly encouraged).

We’ll wait until later in the book to pick apart many of the details in this query (see
Chapter 5); the important observation at the moment is that the tweets are keyed by
results in the response. We can distill the text of the 500 tweets into a list with the
following approach. Example 1-6 illustrates a double list comprehension that’s inden-
ted to illustrate the intuition behind it being nothing more than a nested loop.

6 | Chapter 1: Introduction: Hacking on Twitter Data

Example 1-6. A simple list comprehension in Python

>>> tweets = [r['text'] \
... for result in search_results \
... for r in result['results']]

List comprehensions are used frequently throughout this book. Although they can look
quite confusing if written on a single line, printing them out as nested loops clarifies
the meaning. The result of tweets in this particular case is equivalent to defining an
empty list called tweets and invoking tweets.append(r['text']) in the same kind of
nested loop as presented here. See the “Data Structures” section in the official Python
tutorial for more details. List comprehensions are particularly powerful because they
usually yield substantial performance gains over nested lists and provide an intuitive
(once you’re familiar with them) yet terse syntax.

Frequency Analysis and Lexical Diversity
One of the most intuitive measurements that can be applied to unstructured text is a
metric called lexical diversity. Put simply, this is an expression of the number of unique
tokens in the text divided by the total number of tokens in the text, which are elementary
yet important metrics in and of themselves. It could be computed as shown in Exam-
ple 1-7.

Example 1-7. Calculating lexical diversity for tweets

>>> words = []
>>> for t in tweets:
... words += [w for w in t.split()]
...
>>> len(words) # total words
7238
>>> len(set(words)) # unique words
1636
>>> 1.0*len(set(words))/len(words) # lexical diversity
0.22602928985907708
>>> 1.0*sum([len(t.split()) for t in tweets])/len(tweets) # avg words per tweet
14.476000000000001

Prior to Python 3.0, the division operator applies the floor function and
returns an integer value (unless one of the operands is a floating-point
value). Multiply either the numerator or the denominator by 1.0 to avoid
truncation errors.

One way to interpret a lexical diversity of around 0.23 would be to say that about one
out of every four words in the aggregated tweets is unique. Given that the average
number of words in each tweet is around 14, that translates to just over 3 unique words
per tweet. Without introducing any additional information, that could be interpreted
as meaning that each tweet carries about 20 percent unique information. What would
be interesting to know at this point is how “noisy” the tweets are with uncommon

Collecting and Manipulating Twitter Data | 7

abbreviations users may have employed to stay within the 140 characters, as well as
what the most frequent and infrequent terms used in the tweets are. A distribution of
the words and their frequencies would be helpful. Although these are not difficult to
compute, we’d be better off installing a tool that offers a built-in frequency distribution
and many other tools for text analysis.

The Natural Language Toolkit (NLTK) is a popular module we’ll use throughout this
book: it delivers a vast amount of tools for various kinds of text analytics, including the
calculation of common metrics, information extraction, and natural language process-
ing (NLP). Although NLTK isn’t necessarily state-of-the-art as compared to ongoing
efforts in the commercial space and academia, it nonetheless provides a solid and broad
foundation—especially if this is your first experience trying to process natural language.
If your project is sufficiently sophisticated that the quality or efficiency that NLTK
provides isn’t adequate for your needs, you have approximately three options, de-
pending on the amount of time and money you are willing to put in: scour the open
source space for a suitable alternative by running comparative experiments and bench-
marks, churn through whitepapers and prototype your own toolkit, or license a com-
mercial product. None of these options is cheap (assuming you believe that time is
money) or easy.

NLTK can be installed per the norm with easy_install, but you’ll need to restart the
interpreter to take advantage of it. You can use the cPickle module to save (“pickle”)
your data before exiting your current working session, as shown in Example 1-8.

Example 1-8. Pickling your data

>>> f = open("myData.pickle", "wb")
>>> import cPickle
>>> cPickle.dump(words, f)
>>> f.close()
>>>
$ easy_install nltk
Searching for nltk

...truncated output...

Finished processing dependencies for nltk

If you encounter an “ImportError: No module named yaml” problem
when you try to import nltk, execute an easy_install pyYaml, which
should clear it up.

After installing NLTK, you might want to take a moment to visit its official website,
where you can review its documentation. This includes the full text of Steven Bird,
Ewan Klein, and Edward Loper’s Natural Language Processing with Python (O’Reilly),
NLTK’s authoritative reference.

8 | Chapter 1: Introduction: Hacking on Twitter Data

What are people talking about right now?

Among the most compelling reasons for mining Twitter data is to try to answer the
question of what people are talking about right now. One of the simplest techniques
you could apply to answer this question is basic frequency analysis. NLTK simplifies
this task by providing an API for frequency analysis, so let’s save ourselves some work
and let NLTK take care of those details. Example 1-9 demonstrates the findings from
creating a frequency distribution and takes a look at the 50 most frequent and least
frequent terms.

Example 1-9. Using NLTK to perform basic frequency analysis

>>> import nltk
>>> import cPickle
>>> words = cPickle.load(open("myData.pickle"))
>>> freq_dist = nltk.FreqDist(words)
>>> freq_dist.keys()[:50] # 50 most frequent tokens
[u'snl', u'on', u'rt', u'is', u'to', u'i', u'watch', u'justin', u'@justinbieber',
u'be', u'the', u'tonight', u'gonna', u'at', u'in', u'bieber', u'and', u'you',
u'watching', u'tina', u'for', u'a', u'wait', u'fey', u'of', u'@justinbieber:',
u'if', u'with', u'so', u"can't", u'who', u'great', u'it', u'going',
u'im', u':)', u'snl...', u'2nite...', u'are', u'cant', u'dress', u'rehearsal',
u'see', u'that', u'what', u'but', u'tonight!', u':d', u'2', u'will']

>>> freq_dist.keys()[-50:] # 50 least frequent tokens
[u'what?!', u'whens', u'where', u'while', u'white', u'whoever', u'whoooo!!!!',
u'whose', u'wiating', u'wii', u'wiig', u'win...', u'wink.', u'wknd.', u'wohh', u'won',
 u'wonder', u'wondering', u'wootwoot!', u'worked', u'worth', u'xo.', u'xx', u'ya',
u'ya<3miranda', u'yay', u'yay!', u'ya\u2665', u'yea', u'yea.', u'yeaa', u'yeah!',
u'yeah.', u'yeahhh.', u'yes,', u'yes;)', u'yess', u'yess,', u'you!!!!!',
u"you'll", u'you+snl=', u'you,', u'youll', u'youtube??', u'youu<3',
u'youuuuu', u'yum', u'yumyum', u'~', u'\xac\xac']

Python 2.7 added a collections.Counter (http://docs.python.org/library/
collections.html#collections.Counter) class that facilitates counting op-
erations. You might find it useful if you’re in a situation where you can’t
easily install NLTK, or if you just want to experiment with the latest and
greatest classes from Python’s standard library.

A very quick skim of the results from Example 1-9 shows that a lot more useful infor-
mation is carried in the frequent tokens than the infrequent tokens. Although some
work would need to be done to get a machine to recognize as much, the frequent tokens
refer to entities such as people, times, and activities, while the infrequent terms amount
to mostly noise from which no meaningful conclusion could be drawn.

The first thing you might have noticed about the most frequent tokens is that “snl” is
at the top of the list. Given that it is the basis of the original search query, this isn’t
surprising at all. Where it gets more interesting is when you skim the remaining tokens:
there is apparently a lot of chatter about a fellow named Justin Bieber, as evidenced by

Collecting and Manipulating Twitter Data | 9

the tokens @justinbieber, justin, and bieber. Anyone familiar with SNL would also
know that the occurrences of the tokens “tina” and “fey” are no coincidence, given
Tina Fey’s longstanding affiliation with the show. Hopefully, it’s not too difficult (as a
human) to skim the tokens and form the conjecture that Justin Bieber is a popular guy,
and that a lot of folks were very excited that he was going to be on the show on the
Saturday evening the search query was executed.

At this point, you might be thinking, “So what? I could skim a few tweets and deduce
as much.” While that may be true, would you want to do it 24/7, or pay someone to
do it for you around the clock? And what if you were working in a different domain
that wasn’t as amenable to skimming random samples of short message blurbs? The
point is that frequency analysis is a very simple, yet very powerful tool that shouldn’t
be overlooked just because it’s so obvious. On the contrary, it should be tried out first
for precisely the reason that it’s so obvious and simple. Thus, one preliminary takeaway
here is that the application of a very simple technique can get you quite a long way
toward answering the question, “What are people talking about right now?”

As a final observation, the presence of “rt” is also a very important clue as to the nature
of the conversations going on. The token RT is a special symbol that is often prepended
to a message to indicate that you are retweeting it on behalf of someone else. Given the
high frequency of this token, it’s reasonable to infer that there were a large amount of
duplicate or near-duplicate tweets involving the subject matter at hand. In fact, this
observation is the basis of our next analysis.

The token RT can be prepended to a message to indicate that it is being
relayed, or “retweeted” in Twitter parlance. For example, a tweet of “RT
@SocialWebMining Justin Bieber is on SNL 2nite. w00t?!?” would in-
dicate that the sender is retweeting information gained via the user
@SocialWebMining. An equivalent form of the retweet would be “Justin
Bieber is on SNL 2nite. w00t?!? Ummm…(via @SocialWebMining)”.

Extracting relationships from the tweets

Because the social web is first and foremost about the linkages between people in the
real world, one highly convenient format for storing social web data is a graph. Let’s
use NetworkX to build out a graph connecting Twitterers who have retweeted infor-
mation. We’ll include directionality in the graph to indicate the direction that infor-
mation is flowing, so it’s more precisely called a digraph. Although the Twitter APIs do
offer some capabilities for determining and analyzing statuses that have been retweeted,
these APIs are not a great fit for our current use case because we’d have to make a lot
of API calls back and forth to the server, which would be a waste of the API calls included
in our quota.

10 | Chapter 1: Introduction: Hacking on Twitter Data

At the time this book was written, Twitter imposes a rate limit of 350
API calls per hour for authenticated requests; anonymous requests are
limited to 150 per hour. You can read more about the specifics at http:
//dev.twitter.com/pages/rate-limiting. In Chapters 4 and 5, we’ll discuss
techniques for making the most of the rate limiting, as well as some other
creative options for collecting data.

Besides, we can use the clues in the tweets themselves to reliably extract retweet infor-
mation with a simple regular expression. By convention, Twitter usernames being with
an @ symbol and can only include letters, numbers, and underscores. Thus, given the
conventions for retweeting, we only have to search for the following patterns:

• RT followed by a username

• via followed by a username

Although Chapter 5 introduces a module specifically designed to parse entities out of
tweets, Example 1-10 demonstrates that you can use the re module to compile§ a pat-
tern and extract the originator of a tweet in a lightweight fashion, without any special
libraries.

Example 1-10. Using regular expressions to find retweets

>>> import re
>>> rt_patterns = re.compile(r"(RT|via)((?:\b\W*@\w+)+)", re.IGNORECASE)
>>> example_tweets = ["RT @SocialWebMining Justin Bieber is on SNL 2nite. w00t?!?",
... "Justin Bieber is on SNL 2nite. w00t?!? (via @SocialWebMining)"]
>>> for t in example_tweets:
... rt_patterns.findall(t)
...
[('RT', ' @SocialWebMining')]
[('via', ' @SocialWebMining')]

In case it’s not obvious, the call to findall returns a list of tuples in which each tuple
contains either the matching text or an empty string for each group in the pattern; note
that the regex does leave a leading space on the extracted entities, but that’s easily fixed
with a call to strip(), as demonstrated in Example 1-11. Since neither of the example
tweets contains both of the groups enclosed in the parenthetical expressions, one string
is empty in each of the tuples.

Regular expressions are a basic programming concept whose explana-
tion is outside the scope of this book. The re module documentation is
a good place to start getting up to speed, and you can always consult
Friedl’s classic Mastering Regular Expressions (O’Reilly) if you want to
learn more than you’ll probably ever need to know about them.

§ In the present context, compiling a regular expression means transforming it into bytecode so that it can be
executed by a matching engine written in C.

Collecting and Manipulating Twitter Data | 11

Given that the tweet data structure as returned by the API provides the username of
the person tweeting and the newly found ability to extract the originator of a retweet,
it’s a simple matter to load this information into a NetworkX graph. Let’s create a graph
in which nodes represent usernames and a directed edge between two nodes signifies
that there is a retweet relationship between the nodes. The edge itself will carry a pay-
load of the tweet ID and tweet text itself.

Example 1-11 demonstrates the process of generating such a graph. The basic steps
involved are generalizing a routine for extracting usernames in retweets, flattening out
the pages of tweets into a flat list for easier processing in a loop, and finally, iterating
over the tweets and adding edges to a graph. Although we’ll generate an image of the
graph later, it’s worthwhile to note that you can gain a lot of insight by analyzing the
characteristics of graphs without necessarily visualizing them.

Example 1-11. Building and analyzing a graph describing who retweeted whom

>>> import networkx as nx
>>> import re
>>> g = nx.DiGraph()
>>>
>>> all_tweets = [tweet
... for page in search_results
... for tweet in page["results"]]
>>>
>>> def get_rt_sources(tweet):
... rt_patterns = re.compile(r"(RT|via)((?:\b\W*@\w+)+)", re.IGNORECASE)
... return [source.strip()
... for tuple in rt_patterns.findall(tweet)
... for source in tuple
... if source not in ("RT", "via")]
...
>>> for tweet in all_tweets:
... rt_sources = get_rt_sources(tweet["text"])
... if not rt_sources: continue
... for rt_source in rt_sources:
... g.add_edge(rt_source, tweet["from_user"], {"tweet_id" : tweet["id"]})
...
>>> g.number_of_nodes()
160
>>> g.number_of_edges()
125
>>> g.edges(data=True)[0]
(u'@ericastolte', u'bonitasworld', {'tweet_id': 11965974697L})
>>> len(nx.connected_components(g.to_undirected()))
37
>>> sorted(nx.degree(g))
[1,
1,
1,
1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 9, 37]

12 | Chapter 1: Introduction: Hacking on Twitter Data

The built-in operations that NetworkX provides are a useful starting point to make
sense of the data, but it’s important to keep in mind that we’re only looking at a very
small slice of the overall conversation happening on Twitter about SNL—500 tweets
out of potentially tens of thousands (or more). For example, the number of nodes in
the graph tells us that out of 500 tweets, there were 160 users involved in retweet
relationships with one another, with 125 edges connecting those nodes. The ratio of
160/125 (approximately 1.28) is an important clue that tells us that the average de-
gree of a node is approximately one—meaning that although some nodes are connected
to more than one other node, the average is approximately one connection per node.

The call to connected_components shows us that the graph consists of 37 subgraphs and
is not fully connected. The output of degree might seem a bit cryptic at first, but it
actually confirms insight we’ve already gleaned: think of it as a way to get the gist of
how well connected the nodes in the graph are without having to render an actual
graph. In this case, most of the values are 1, meaning all of those nodes have a degree
of 1 and are connected to only one other node in the graph. A few values are between
2 and 9, indicating that those nodes are connected to anywhere between 2 and 9 other
nodes. The extreme outlier is the node with a degree of 37. The gist of the graph is that
it’s mostly composed of disjoint nodes, but there is one very highly connected node.
Figure 1-1 illustrates a distribution of degree as a column chart. The trendline shows
that the distribution closely follows a Power Law and has a “heavy” or “long” tail.
Although the characteristics of distributions with long tails are by no means treated
with rigor in this book, you’ll find that lots of distributions we’ll encounter exhibit this
property, and you’re highly encouraged to take the initiative to dig deeper if you feel
the urge. A good starting point is Zipf’s law.

Figure 1-1. A distribution illustrating the degree of each node in the graph, which reveals insight into
the graph’s connectedness

Collecting and Manipulating Twitter Data | 13

We’ll spend a lot more time in this book using automatable heuristics to make sense
of the data; this chapter is intended simply as an introduction to rattle your brain and
get you thinking about ways that you could exploit data with the low-hanging fruit
that’s available to you. Before we wrap up this chapter, however, let’s visualize the
graph just to be sure that our intuition is leading us in the right direction.

Visualizing Tweet Graphs
Graphviz is a staple in the visualization community. This section introduces one pos-
sible approach for visualizing graphs of tweet data: exporting them to the DOT lan-
guage, a simple text-based format that Graphviz consumes. Graphviz binaries for all
platforms can be downloaded from its official website, and the installation is straight-
forward regardless of platform. Once Graphviz is installed, *nix users should be able
to easy_install pygraphviz per the norm to satisfy the PyGraphviz dependency Net-
workX requires to emit DOT. Windows users will most likely experience difficulties
installing PyGraphviz,‖ but this turns out to be of little consequence since it’s trivial to
tailor a few lines of code to generate the DOT language output that we need in this
section.

Example 1-12 illustrates an approach that works for both platforms.

Example 1-12. Generating DOT language output is easy regardless of platform

OUT = "snl_search_results.dot"

try:
 nx.drawing.write_dot(g, OUT)
except ImportError, e:

 # Help for Windows users:
 # Not a general-purpose method, but representative of
 # the same output write_dot would provide for this graph
 # if installed and easy to implement

 dot = ['"%s" -> "%s" [tweet_id=%s]' % (n1, n2, g[n1][n2]['tweet_id']) \
 for n1, n2 in g.edges()]
 f = open(OUT, 'w')
 f.write('strict digraph {\n%s\n}' % (';\n'.join(dot),))
 f.close()

The DOT output that is generated is of the form shown in Example 1-13.

‖ See NetworkX Ticket #117, which reveals that this has been a long-standing issue that somehow has not
garnered the support to be overcome even after many years of frustration. The underlying issue has to do
with the need to compile C code during the easy_install process. The ability to work around this issue fairly
easily by generating DOT language output may be partly responsible for why it has remained unresolved for
so long.

14 | Chapter 1: Introduction: Hacking on Twitter Data

Example 1-13. Example DOT language output

strict digraph {
"@ericastolte" -> "bonitasworld" [tweet_id=11965974697];
"@mpcoelho" -> "Lil_Amaral" [tweet_id=11965954427];
"@BieberBelle123" -> "BELIEBE4EVER" [tweet_id=11966261062];
"@BieberBelle123" -> "sabrina9451" [tweet_id=11966197327];
}

With DOT language output on hand, the next step is to convert it into an image.
Graphviz itself provides a variety of layout algorithms to visualize the exported graph;
circo, a tool used to render graphs in a circular-style layout, should work well given
that the data suggested that the graph would exhibit the shape of an ego graph with a
“hub and spoke”-style topology, with one central node being highly connected to many
nodes having a degree of 1. On a *nix platform, the following command converts the
snl_search_results.dot file exported from NetworkX into an
snl_search_results.dot.png file that you can open in an image viewer (the result of the
operation is displayed in Figure 1-2):

$ circo -Tpng -Osnl_search_results snl_search_results.dot

Windows users can use the GVedit application to render the file as shown in Fig-
ure 1-3. You can read more about the various Graphviz options in the online docu-
mentation. Visual inspection of the entire graphic file confirms that the characteristics
of the graph align with our previous analysis, and we can visually confirm that the node
with the highest degree is @justinbieber, the subject of so much discussion (and, in
case you missed that episode of SNL, the guest host of the evening). Keep in mind that
if we had harvested a lot more tweets, it is very likely that we would have seen many
more interconnected subgraphs than are evidenced in the sampling of 500 tweets that
we have been analyzing. Further analysis of the graph is left as a voluntary exercise for
the reader, as the primary objective of this chapter was to get your development envi-
ronment squared away and whet your appetite for more interesting topics.

Graphviz appears elsewhere in this book, and if you consider yourself to be a data
scientist (or are aspiring to be one), it is a tool that you’ll want to master. That said,
we’ll also look at many other useful approaches to visualizing graphs. In the chapters
to come, we’ll cover additional outlets of social web data and techniques for analysis.

Synthesis: Visualizing Retweets with Protovis
A turn-key example script that synthesizes much of the content from this chapter and
adds a visualization is how we’ll wrap up this chapter. In addition to spitting some
useful information out to the console, it accepts a search term as a command line pa-
rameter, fetches, parses, and pops up your web browser to visualize the data as an
interactive HTML5-based graph. It is available through the official code repository for
this book at http://github.com/ptwobrussell/Mining-the-Social-Web/blob/master/python
_code/introduction__retweet_visualization.py. You are highly encouraged to try it out.

Collecting and Manipulating Twitter Data | 15

We’ll revisit Protovis, the underlying visualization toolkit for this example, in several
chapters later in the book. Figure 1-4 illustrates Protovis output from this script. The
boilerplate in the sample script is just the beginning—much more can be done!

Figure 1-2. Our search results rendered in a circular layout with Graphviz

16 | Chapter 1: Introduction: Hacking on Twitter Data

Figure 1-3. Windows users can use GVedit instead of interacting with Graphviz at the command
prompt

Closing Remarks
This chapter got you up and running, and illustrated how easy it is to use Python’s
interactive interpreter to explore and visualize Twitter data. Before you move on to
other chapters, it’s important that you feel comfortable with your Python development
environment, and it’s highly recommended that you spend some time with the Twitter
APIs and Graphviz. If you feel like going out on a tangent, you might want to check
out canviz, a project that aims to draw Graphviz graphs on a web browser <canvas>
element. You might also want to investigate IPython, a “better” Python interpreter that
offers tab completion, history tracking, and more. Most of the work we’ll do in this
book from here on out will involve runnable scripts, but it’s important that you’re as
productive as possible when trying out new ideas, debugging, etc.

Closing Remarks | 17

Figure 1-4. An interactive Protovis graph with a force-directed layout that visualizes retweet
relationships for a “JustinBieber” query

18 | Chapter 1: Introduction: Hacking on Twitter Data

CHAPTER 2

Microformats: Semantic Markup and
Common Sense Collide

In terms of the Web’s ongoing evolution, microformats are an important step forward
because they provide an effective mechanism for embedding “smarter data” into web
pages and are easy for content authors to implement. Put succinctly, microformats are
simply conventions for unambiguously including structured data into web pages in an
entirely value-added way. This chapter begins by briefly introducing the microformats
landscape and then digs right into some examples involving specific uses of the XFN
(XHTML Friends Network), geo, hRecipe, and hReview microformats. In particular,
we’ll mine human relationships out of blogrolls, extract coordinates from web pages,
parse out recipes from foodnetwork.com, and analyze reviews on some of those recipes.
The example code listings in this chapter aren’t implemented with the intention of
being “full spec parsers,” but should be more than enough to get you on your way.

Although it might be somewhat of a stretch to call data decorated with microformats
like geo or hRecipe “social data,” it’s still interesting and will inevitably play an in-
creased role in social data mashups. At the time this book was written, nearly half of
all web developers reported some use of microformats, the microformats.org com-
munity had just celebrated its fifth birthday, and Google reported that 94% of the time,
microformats are involved in Rich Snippets. If Google has anything to say about it,
we’ll see significant growth in microformats; in fact, according to ReadWriteWeb,
Google wants to see at least 50% of web pages contain some form of semantic markup
and is encouraging “beneficial peer pressure” for companies to support such initia-
tives. Any way you slice it, you’ll be seeing more of microformats in the future if you’re
paying attention to the web space, so let’s get to work.

XFN and Friends
Semantic web enthusiasts herald that technologies such as FOAF (Friend of a Friend
—an ontology describing relations between people, their activities, etc.) may one day

19

be the catalyst that drives robust decentralized social networks that could be construed
as the antithesis of tightly controlled platforms like Facebook. And although so-called
semantic web technologies such as FOAF don’t seem to have quite yet reached the
tipping point that would lead them into ubiquity, this isn’t too surprising. If you know
much about the short history of the Web, you’ll recognize that innovation is rampant
and that the highly decentralized nature in which the Web operates is not very condu-
cive to overnight revolutions (see Chapter 10). Rather, change seems to happen con-
tinually, fluidly, and in a very evolutionary way. The way that microformats have
evolved to fill the void of “intelligent data” on the Web is a particularly good example
of bridging existing technology with up-and-coming standards that aren’t quite there
yet. In this particular case, it’s a story of narrowing the gap between a fairly ambiguous
web, primarily based on the human-readable HTML 4.01 standard, with a more se-
mantic web in which information is much less ambiguous and friendlier to machine
interpretation.

The beauty of microformats is that they provide a way to embed data that’s related to
social networking, calendaring, resumes, and shared bookmarks, and they are much
more into existing HTML markup right now, in an entirely backward-compatible way.
The overall ecosystem is quite diverse with some microformats, such as geo, being quite
established while others are slowly gaining ground and achieving newfound popularity
with search engines, social media sites, and blogging platforms. As this book was writ-
ten, notable developments in the microformats community were underway, including
an announcement from Google that they had begun supporting hRecipe as part of their
Rich Snippets initiative. Table 2-1 provides a synopsis of a few popular microformats
and related initiatives you’re likely to encounter if you look around on the Web. For
more examples, see http://microformats.org/wiki/examples-in-the-wild.

Table 2-1. Some popular technologies for embedding structured data into web pages

Technology Purpose Popularity Markup
specification

Type

XFN Representing human-
readable relation-
ships in hyperlinks

Widely used, espe-
cially by blogging
platforms

Semantic HTML,
XHTML

Microformat

geo Embedding geocoor-
dinates for people and
objects

Widely used, espe-
cially by sites such as
MapQuest and
Wikipedia

Semantic HTML,
XHTML

Microformat

hCard Identifying people,
companies, and other
contact info

Widely used Semantic HTML,
XHTML

Microformat

hCalendar Embedding iCalendar
data

Steadily gaining trac-
tion

Semantic HTML,
XHTML

Microformat

hResume Embedding resume
and CV information

Widely used by sites
such as LinkedIna

Semantic HTML,
XHTML

Microformat

20 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

Technology Purpose Popularity Markup
specification

Type

hRecipe Identifying recipes Widely used by niche
sites such as foodnet-
work.com

Semantic HTML,
XHTML

Microformat

Microdata Embedding name/
value pairs into web
pages authored in
HTML5

An emerging technol-
ogy, but gaining
traction

HTML5 W3C initiative

RDFa Embedding unambig-
uous facts into XHTML
pages according to
specialized vocabula-
ries created by
subject-matter
experts

Hit-or-miss depend-
ing on the particular
vocabulary; vocabula-
ries such as FOAF are
steadily gaining
ground while others
are remaining obscure

XHTMLb W3C initiative

Open Graph protocol Embedding profiles of
real-world things into
XHTML pages

Steadily gaining trac-
tion and has tremen-
dous potential given
the reach of the Face-
book platform

XHTML (RDFa-based) Facebook platform
initiative

a LinkedIn presents public resumes in hResume format for its more than 75 million worldwide users.
b Embedding RDFa into semantic markup and HTML5 is an active effort at the time of this writing. See the W3C HTML+RDFa 1.1 Working Draft.

There are many other microformats that you’re likely to encounter, but a good rule of
thumb is to watch what the bigger fish in the pond—such as Google, Yahoo!, and
Facebook—are doing. The more support a microformat gets from a player with sig-
nificant leverage, the more likely it will be to succeed and become useful for data mining.

Semantic Markup?
Given that the purpose of microformats is to embed semantic knowledge into web
pages, it makes sense that either XHTML or semantic HTML is required. But what
exactly is the difference between semantic HTML or semantic markup versus XHTML?
One way of looking at it is from the angle of separating content from presentation.
Semantic HTML is markup that emphasizes the meaning of the information in the page
via tags that are content-focused as opposed to presentation-focused. Unfortunately,
HTML as originally defined and as it initially evolved did very little to promote semantic
markup. XHTML, on the other hand, is well-formed XML and was developed in the
late 1990s to solve the considerable problem of separating content from presentation
that had arisen with HTML. The idea was that original content could be authored in
XML with no focus whatsoever on presentation, but tools could transform the content
into something that could easily be consumed and rendered by browsers. The target
for the transformed content came to be known as XHTML. XHTML is nearly identical
to HTML, except that it is still valid XML and, as such, requires that all elements be
closed or self-closing, properly nested, and defined in lowercase.

XFN and Friends | 21

In terms of design, it appeared that XHTML was exactly what the Web needed. There
was a lot to gain and virtually nothing to lose from the proposition: well-formed
XHTML content could be proven valid against an XML schema and enjoy all of the
other perks of XML, such as custom attributes using namespaces (a device that semantic
web technologies such as RDFa rely upon). The problem is that it just didn’t catch on.
Whether it was the fault of Internet Explorer, confusion amongst web developers about
delivering the correct MIME types to browsers, the quality of the XML developer tools
that were available, or the fact that it just wasn’t reasonable to expect the entire Web
to take a brief timeout to perform the conversion is a contentious discussion that we
should probably avoid. The reality is that it just didn’t happen as we might have ex-
pected. As a result, we now live in a world where semantic markup based on the HTML
4.01 standard that’s over a decade old continues to thrive while XHTML-based tech-
nologies such as RDFa remain on the fringe. Most of the web development world is
holding its breath and hoping that HTML5 will create a long-overdue convergence.

Exploring Social Connections with XFN
With a bit of context established for how microformats fit into the overall web space,
let’s now turn to some practical applications of XFN, which is by far the most popular
microformat you’re likely to encounter. As you already know, XFN is a means of
identifying relationships to other people by including a few keywords in the rel attrib-
ute of an anchor tag. XFN is commonly used in blogs, and particularly in “blogroll”
plug-ins such as those offered by WordPress.* Consider the following HTML content,
shown in Example 2-1, that might be present in a blogroll.

Example 2-1. Example XFN markup

<div>
 Matthew
 J.C.
 Abe
 Baseeret
 Lindsay Belle
 </div>

From reading the content in the rel tags, it’s hopefully pretty obvious what the rela-
tionships are between the various people. Namely, some guy named Matthew has a
couple of friends, a spouse, and a child. He works with one of these friends and has
met everyone in “real life” (which wouldn’t be the case for a strictly online associate).
Apart from using a well-defined vocabulary, that’s about all there is to XFN. The good
news is that it’s deceptively simple, yet incredibly powerful when employed at a large
enough scale because it is deliberately authored structured information. Unless you run
across some content that’s just drastically out of date—as in two best friends becoming
archenemies but just forgot to update their blogrolls accordingly—XFN gives you a

* See http://codex.wordpress.org/Links_Add_New_SubPanel for an example of one popular plug-in.

22 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

very accurate indicator as to how two people are connected. Given that most blogging
platforms support XFN, there’s quite a bit of information that can be discovered. The
bad news is that XFN doesn’t really tell you anything beyond those basics, so you have
to use other sources of information and techniques to discover anything beyond con-
clusions, such as, “Matthew and Baseeret are married and have a child named Lindsay
Belle.” But you have to start somewhere, right?

Let’s whip up a simple script for harvesting XFN data similar to the service offered by
rubhub, a social search engine that crawls and indexes a large number of websites using
XFN. You might also want to check out one of the many online XFN tools if you want
to explore the full specification before moving on to the next section.

A Breadth-First Crawl of XFN Data
Let’s get social by mining some XFN data and building out a social graph from it. Given
that XFN can be embedded into any conceivable web page, the bad news is that we’re
about to do some web scraping. The good news, however, is that it’s probably the most
trivial web scraping you’ll ever do, and the BeautifulSoup package absolutely minimizes
the burden. The code in Example 2-2 uses Ajaxian, a popular blog about modern-day
web development, as the basis of the graph. Do yourself a favor and easy_install Beau
tifulSoup before trying to run it.

Example 2-2. Scraping XFN content from a web page (microformats__xfn_scrape.py)

-*- coding: utf-8 -*-

import sys
import urllib2
import HTMLParser
from BeautifulSoup import BeautifulSoup

Try http://ajaxian.com/
URL = sys.argv[1]

XFN_TAGS = set([
 'colleague',
 'sweetheart',
 'parent',
 'co-resident',
 'co-worker',
 'muse',
 'neighbor',
 'sibling',
 'kin',
 'child',
 'date',
 'spouse',
 'me',
 'acquaintance',
 'met',
 'crush',

Exploring Social Connections with XFN | 23

 'contact',
 'friend',
])

try:
 page = urllib2.urlopen(URL)
except urllib2.URLError:
 print 'Failed to fetch ' + item

try:
 soup = BeautifulSoup(page)
except HTMLParser.HTMLParseError:
 print 'Failed to parse ' + item

anchorTags = soup.findAll('a')

for a in anchorTags:
 if a.has_key('rel'):
 if len(set(a['rel'].split()) & XFN_TAGS) > 0:
 tags = a['rel'].split()
 print a.contents[0], a['href'], tags

As of Version 3.1.x, BeautifulSoup switched to using HTMLParser in-
stead of the SGMLParser, and as a result, a common complaint is that
BeautifulSoup seems a little less robust than in the 3.0.x release branch.
The author of BeautifulSoup recommends a number of options, with
the most obvious choice being to simply use the 3.0.x version if 3.1.x
isn’t robust enough for your needs. Alternatively, you can catch the
HTMLParseError, as shown in Example 2-2, and discard the content.

Running the code against a URL that includes XFN information returns the name, type
of relationship, and a URL for each of a person’s friends. Sample output follows:

Dion Almaer http://www.almaer.com/blog/ [u'me']
Ben Galbraith http://weblogs.java.net/blog/javaben/ [u'co-worker']
Rey Bango http://reybango.com/ [u'friend']
Michael Mahemoff http://softwareas.com/ [u'friend']
Chris Cornutt http://blog.phpdeveloper.org/ [u'friend']
Rob Sanheim http://www.robsanheim.com/ [u'friend']
Dietrich Kappe http://blogs.pathf.com/agileajax/ [u'friend']
Chris Heilmann http://wait-till-i.com/ [u'friend']
Brad Neuberg http://codinginparadise.org/about/ [u'friend']

Assuming that the URL for each friend includes XFN or other useful information, it’s
straightforward enough to follow the links and build out more social graph information
in a systematic way. That approach is exactly what the next code example does: it builds
out a graph in a breadth-first manner, which is to say that it does something like what
is described in Example 2-3 in pseudocode.

Example 2-3. Pseudocode for a breadth-first search

Create an empty graph
Create an empty queue to keep track of nodes that need to be processed

24 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

Add the starting point to the graph as the root node
Add the root node to a queue for processing

Repeat until some maximum depth is reached or the queue is empty:
 Remove a node from the queue
 For each of the node's neighbors:
 If the neighbor hasn't already been processed:
 Add it to the queue
 Add it to the graph
 Create an edge in the graph that connects the node and its neighbor

Note that this approach to building out a graph has the advantage of naturally creating
edges between nodes in both directions, if such edges exist, without any additional
bookkeeping required. This is useful for social situations since it naturally lends itself
to identifying mutual friends without any additional logic. The refinement of the code
from Example 2-2 presented in Example 2-4 takes a breadth-first approach to building
up a NetworkX graph by following hyperlinks if they appear to have XFN data encoded
in them. Running the example code for even the shallow depth of two can return quite
a large graph, depending on the popularity of XFN within the niche community of
friends at hand, as can be seen by generating an image file of the graph and inspecting
it or running various graph metrics on it (see Figure 2-1).

Windows users may want to review “Visualizing Tweet
Graphs” on page 14 for an explanation of why the workaround for
nx.drawing.write_dot is necessary in Example 2-4.

Example 2-4. Using a breadth-first search to crawl XFN links (microformats__xfn_crawl.py)

-*- coding: utf-8 -*-

import sys
import os
import urllib2
from BeautifulSoup import BeautifulSoup
import HTMLParser
import networkx as nx

ROOT_URL = sys.argv[1]

if len(sys.argv) > 2:
 MAX_DEPTH = int(sys.argv[2])
else:
 MAX_DEPTH = 1

XFN_TAGS = set([
 'colleague',
 'sweetheart',
 'parent',
 'co-resident',

Exploring Social Connections with XFN | 25

 'co-worker',
 'muse',
 'neighbor',
 'sibling',
 'kin',
 'child',
 'date',
 'spouse',
 'me',
 'acquaintance',
 'met',
 'crush',
 'contact',
 'friend',
])

OUT = "graph.dot"

depth = 0

g = nx.DiGraph()

next_queue = [ROOT_URL]

while depth < MAX_DEPTH:

 depth += 1
 (queue, next_queue) = (next_queue, [])

 for item in queue:
 try:
 page = urllib2.urlopen(item)
 except urllib2.URLError:
 print 'Failed to fetch ' + item
 continue

 try:
 soup = BeautifulSoup(page)
 except HTMLParser.HTMLParseError:
 print 'Failed to parse ' + item
 continue

 anchorTags = soup.findAll('a')

 if not g.has_node(item):
 g.add_node(item)

 for a in anchorTags:
 if a.has_key('rel'):
 if len(set(a['rel'].split()) & XFN_TAGS) > 0:
 friend_url = a['href']
 g.add_edge(item, friend_url)
 g[item][friend_url]['label'] = a['rel'].encode('utf-8')
 g.node[friend_url]['label'] = a.contents[0].encode('utf-8')

26 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

 next_queue.append(friend_url)

 # Further analysis of the graph could be accomplished here

if not os.path.isdir('out'):
 os.mkdir('out')

try:
 nx.drawing.write_dot(g, os.path.join('out', OUT))
except ImportError, e:

 # Help for Windows users:
 # Not a general purpose method, but representative of
 # the same output write_dot would provide for this graph
 # if installed and easy to implement

 dot = []
 for (n1, n2) in g.edges():
 dot.append('"%s" [label="%s"]' % (n2, g.node[n2]['label']))
 dot.append('"%s" -> "%s" [label="%s"]' % (n1, n2, g[n1][n2]['label']))

 f = open(os.path.join('out', OUT), 'w')
 f.write('''strict digraph {
 %s
 }''' % (';\n'.join(dot),))
 f.close()

*nix users could produce an image file with a good layout
as follows from a terminal:
$ circo -Tpng -Ograph graph.dot
Windows users could use the same options with circo.exe
or use the GVedit desktop application

The use of the attribute label for the nodes and edges in the DiGraph
isn’t arbitrary. Attributes included in nodes and edges are serialized into
the DOT language, and Graphviz tools recognize label as a special at-
tribute.

Exploring Social Connections with XFN | 27

Figure 2-1. Digraph of Ajaxian XFN data—note that the edge label “Me” between http://ajaxian.com
and Dion Almaer indicates that Dion owns the blog

Despite its simplicity, the graph is very interesting. It connects eight people, with a
gentleman by the name of Dion Almaer being the common thread. Note, however, that
crawling out one or more levels might introduce other nodes in the graph that are
connected to everyone else. From the graph alone, it’s unclear whether Dion might
have a closer relationship with Ben Galbraith than the other folks because of the
difference between “co-worker” and “friend” relationships, but we could nonetheless
crawl Ben’s XFN information, if he has provided any at the destination identified by
his hyperlink, and search for other co-worker tags to build out a social network of who
works with whom. See Chapter 6 for more on mining data as it relates to colleagues
and coworkers.

Brief analysis of breadth-first techniques

We generally won’t take quite this long of a pause to analyze the approach, but given
that this example is the first real algorithm we’ve written, and that this isn’t the last
we’ll see of it in this book, it’s worthwhile to examine it more closely. In general, there
are two criteria for examination that you should always consider for an algorithm:
efficiency and effectiveness. Or, to put it another way: performance and quality.

Standard performance analysis of any algorithm generally involves examining its worst-
case time and space complexity—in other words, the amount of time it would take the
program to execute, and the amount of memory required for execution over a very large
data set. The breadth-first approach we’ve taken is essentially a breadth-first search,

28 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

except that we’re not actually searching for anything in particular because there are no
exit criteria beyond expanding the graph out either to a maximum depth or until we
run out of nodes. If we were searching for something specific instead of just crawling
links indefinitely, that would be considered an actual breadth-first search. In practice,
however, almost all searches impose some kind of exit criteria because of the limitations
of finite computing resources. Thus, a more common variation of a breadth-first search
is called a bounded breadth-first search, which imposes a limit on the maximum depth
of the search just as we do in this example.

For a breadth-first search (or breadth-first crawl), both the time and space complexity
can be bounded in the worst case by bd, where b is the branching factor of the graph
and d is the depth. If you sketch out an example on paper and think about it, this
analysis makes a lot of sense. If every node in a graph had five neighbors, and you only
went out to a depth of one, you’d end up with six nodes in all: the root node and its
five neighbors. If all five of those neighbors had five neighbors too, and you expanded
out another level, you’d end up with 31 nodes in all: the root node, the root node’s five
neighbors, and five neighbors for each of the root node’s neighbors. Such analysis may
seem pedantic, but in the emerging era of big data, being able to perform at least a crude
level of analysis based on what you know of the data set is more important than ever.
Table 2-2 provides an overview of how bd grows for a few sizes of b and d.

Table 2-2. Example branching factor calculations for graphs of varying depths

Branching
factor

Nodes for
depth = 1

Nodes for
depth = 2

Nodes for
depth = 3

Nodes for
depth = 4

Nodes for
depth = 5

2 3 7 15 31 63

3 4 13 40 121 364

4 5 21 85 341 1365

5 6 31 156 781 3906

6 7 43 259 1555 9331

While the previous comments pertain primarily to the theoretical bounds of the algo-
rithm, one final consideration worth noting is the practical performance of the algo-
rithm for a data set of a fixed size. Mild profiling of the code would reveal that it is
primarily I/O bound from the standpoint that the vast majority of time is spent waiting
for the urlopen method to return content to be processed. A later example, “Threading
Together Conversations” on page 67, introduces and demonstrates the use of a thread
pool to increase performance in exchange for a modicum of complexity.

A final consideration in analysis is the overall quality of the results. From the standpoint
of quality analysis, basic visual inspection of the graph output reveals that there actually
is a graph that connects people. Mission accomplished? Yes, but there’s always room
for improvement. One consideration is that slight variations in URLs result in multiple
nodes potentially appearing in the graph for the same person. For example, if Matthew

Exploring Social Connections with XFN | 29

is referenced in one hyperlink with the URL http://example.com/~matthew but as http://
www.example.com/~matthew in another URL, those two nodes will remain distinct in
the graph even though they most likely point to the same resource on the Web. For-
tunately, XFN defines a special rel="me" value that can be used for identity consolida-
tion. Google’s Social Graph API takes this very approach to connect a user’s various
profiles, and there exist many examples of services that use rel="me" to allow users to
connect profiles across multiple external sites. Another (much lesser) issue in resolving
URLs is the use or omission of a trailing slash at the end. Most well-designed sites will
automatically redirect one to the other, so this detail is mostly a nonissue.

Fortunately, others have also recognized these kinds of problems and decided to do
something about them. SocialGraph Node Mapper is an interesting open source project
that standardizes URLs relative to trailing slashes, the presence of “www”, etc., but it
also recognizes that various social networking sites might expose different URLs that
all link back to the same person. For example, http://blog.example.com/matthew and
http://status.example.com?user=matthew might resolve to the same person for a given
social networking site.

Geocoordinates: A Common Thread for Just About Anything
Omitting a discussion of microformats like geo and hRecipe as not being particularly
useful for mining the social web would be a big mistake. Although it’s certainly true
that standalone geo data in no particular context isn’t necessarily social, important but
much less than obvious relationships often emerge from disparate data sets that are
tied together with a common geographic context. Geo data is ubiquitous and plays a
powerful part in too many social mashups to even name, because a particular point in
space can be used as the glue to cluster people together. The divide between “real life”
and life on the Web continues to close, and just about any kind of data becomes social
the moment that it is tied to a particular individual in the real world. For example,
there’s an awful lot that you might be able to tell about a person based on where she
lives, what kinds of food she prefers to cook at home, and even the specifics about
ingredients in those recipes. This section works through some examples of finding,
parsing, and visualizing geo and hRecipe data, since it’ll likely be sooner rather than
later that you’ll think of something useful to do with it.

Wikipedia Articles + Google Maps = Road Trip?
One of the simplest and most widely used microformats that embeds geolocation in-
formation into web pages is appropriately called geo. The specification is inspired by
a property with the same name from vCard, which provides a means of specifying a
location. There are two possible means of embedding a microformat with geo. The
HTML snippet in Example 2-5 illustrates the two techniques for describing Franklin,
the best small town in Tennessee.

30 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

Example 2-5. Sample geo markup

<!-- The multiple class approach -->

 36.166
 -86.784

<!-- When used as one class, the separator must be a semicolon -->
36.166; -86.784

As you can see, this microformat simply wraps latitude and longitude values in tags
with corresponding class names, and packages them both inside a tag with a class of
geo. A slew of popular sites—including Wikipedia, Yahoo! Local, and MapQuest Local,
among many others—use geo and other microformats to expose structured data in
their pages.

A common practice when using geo is to hide the information that’s
encoded from the user. There are two ways that you might do this with
traditional CSS: style="display: none" and style="visibility:
hidden". The former removes the element’s placement on the page en-
tirely so that the layout behaves as though it is not there at all. The latter
hides the content but reserves the space it takes up on the page.

Example 2-6 illustrates a simple program that parses geo microformat data from a
MapQuest Local page to show how you could extract coordinates from content im-
plementing the geo microformat.

Example 2-6. Extracting geo data from MapQuest Local (microformats__mapquest_geo.py)

-*- coding: utf-8 -*-

import sys
import urllib2
from BeautifulSoup import BeautifulSoup
import HTMLParser

Pass in a URL such as http://local.mapquest.com/franklin-tn

url = sys.argv[1]

try:
 page = urllib2.urlopen(url)
except urllib2.URLError, e:
 print 'Failed to fetch ' + url
 raise e
 exit()

try:
 soup = BeautifulSoup(page)
except HTMLParser.HTMLParseError:

Geocoordinates: A Common Thread for Just About Anything | 31

 print 'Failed to parse ' + url
 exit()

geoTag = soup.find(True, 'geo')

if geoTag and len(geoTag) > 1:
 lat = geoTag.find(True, 'latitude').string
 lon = geoTag.find(True, 'longitude').string
 print 'Location is at', lat, lon
elif geoTag and len(geoTag) == 1:
 (lat, lon) = geoTag.string.split(';')
 (lat, lon) = (lat.strip(), lon.strip())
 print 'Location is at', lat, lon
else:
 print 'No location found'

The implications of using microformats are subtle yet somewhat profound: while a
human might be reading an article about a place like Franklin, TN and just intuitively
know that a dot on a map on the page denotes the town’s location, a robot would not
be able to come to the same conclusion very easily without specialized logic that targets
various pattern-matching possibilities. Such page scraping is a messy proposition, and
typically just when you think you have all of the possibilities figured out, you find that
you’ve missed one. Embedding proper semantics into the page that effectively tag un-
structured data in a way that even our pal Robby the Robot could understand removes
ambiguity and lowers the bar for crawlers and developers such as yourself. It’s a win-
win situation for the producer and the consumer, and hopefully the net effect is in-
creased innovation for everyone.

Plotting geo data via microform.at and Google Maps

The moment you find a web page with interesting geo data embedded, the first thing
you’ll want to do is visualize it. For example, consider the “List of National Parks of
the United States” Wikipedia article. It displays a nice tabular view of the national parks
and marks them up with geo formatting, but wouldn’t it be nice to quickly load the
data into an interactive tool for visual inspection? Well, microform.at is a terrific little
web service that extracts several types of microformats from a given URL and passes
them back in a variety of useful formats. It exposes a variety of options for detecting
and interacting with microformat data in web pages, as shown in Figure 2-2.

32 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

Figure 2-2. http://microform.at’s results for the Wikipedia article entitled “List of National Parks of
the United States”

If given the option, KML (Keyhole Markup Language) output is perhaps the easiest
way to visualize geo data. You can either download Google Earth and load the KML
file locally, or type a URL containing KML data directly into the Google Maps search
bar to bring it up without any additional effort required. In the results displayed for
microform.at, clicking on the “KML” link triggers a file download that you can use in
Google Earth, but you can copy it to the clipboard via a right-click and pass that to
Google Maps. Figure 2-3 displays the Google Maps visualization for http://microform
.at/?type=geo&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FList_of_U.S._na
tional_parks—the KML results for the aforementioned Wikipedia article, which is just
the base URL http://microform.at with type and url query string parameters.

Geocoordinates: A Common Thread for Just About Anything | 33

Figure 2-3. Google Maps results that display all of the national parks in the United States when passed
KML results from microform.at

The ability to start with a Wikipedia article containing semantic markup such as geo
data and trivially visualize it is a powerful analytical capability because it delivers insight
quickly for so little effort. Browser extensions such as the Firefox Operator add-on aim
to minimize the effort even further. Only so much can be said in one chapter, but a neat
way to spend an hour or so would be to mash up the national park data from this section
with contact information from your LinkedIn professional network to discover how
you might be able to have a little bit more fun on your next (possibly contrived) business
trip. (See “Geographically Clustering Your Network” on page 193 for an example of
how to harvest and analyze geo data by applying the k-means technique for finding
clusters and computing centroids for those clusters.)

34 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

Slicing and Dicing Recipes (for the Health of It)
Since Google’s Rich Snippets initiative took off, there’s been an ever-increasing aware-
ness of microformats, and many of the most popular foodie websites have made solid
progress in exposing recipes and reviews with hRecipe and hReview. Consider the po-
tential for a fictitious online dating service that crawls blogs and other social hubs,
attempting to pair people together for dinner dates. One could reasonably expect that
having access to enough geo and hRecipe information linked to specific people would
make a profound difference in the “success rate” of first dates. People could be paired
according to two criteria: how close they live to one another and what kinds of foods
they eat. For example, you might expect a dinner date between two individuals who
prefer to cook vegetarian meals with organic ingredients to go a lot better than a date
between a BBQ-lover and a vegan. Dining preferences and whether specific types of
allergens or organic ingredients are used could be useful clues to power the right busi-
ness idea. While we won’t be trying to launch a new online data service, we’ll get the
ball rolling in case you decide to take this idea and run with it.

The Food Network is one of many online sites that’s really embracing microformat
initiatives for the betterment of the entire Web, exposing recipe information in the
hRecipe microformat and using the hReview microformat for reviews of the recipes.†

This section demonstrates how search engines (or you) might parse out the structured
data from recipes and reviews contained in Food Network web pages for indexing or
analyzing. Although we won’t do any analysis of the free text in the recipes or reviews,
or permanently store the information extracted, later chapters will demonstrate how
to do these things if you’re interested. In particular, Chapter 3 introduces CouchDB, a
great way to store and share data (and analysis) you extract from microformat-powered
web content, and Chapter 7 introduces some fundamentals for natural language pro-
cessing (NLP) that you can use to gain a deeper understanding of the content in the
reviews. (Coincidentally, it turns out that a recipe even shows up in that chapter.)

An adaptation of Example 2-6 that parses out hRecipe-formatted data is shown in
Example 2-7.

Example 2-7. Parsing hRecipe data for a Pad Thai recipe (microformats__foodnetwork_hrecipe.py)

-*- coding: utf-8 -*-

import sys
import urllib2
import json
import HTMLParser
import BeautifulSoup

Pass in a URL such as

† In mid 2010, The Food Network implemented hReview in much the same fashion as Yelp, which is introduced
in the next section; however, as of early January 2011, Food Network’s implementation changed to include
only hreview-aggregate.

Slicing and Dicing Recipes (for the Health of It) | 35

http://www.foodnetwork.com/recipes/alton-brown/pad-thai-recipe/index.html

url = sys.argv[1]

Parse out some of the pertinent information for a recipe
See http://microformats.org/wiki/hrecipe

def parse_hrecipe(url):
 try:
 page = urllib2.urlopen(url)
 except urllib2.URLError, e:
 print 'Failed to fetch ' + url
 raise e

 try:
 soup = BeautifulSoup.BeautifulSoup(page)
 except HTMLParser.HTMLParseError, e:
 print 'Failed to parse ' + url
 raise e

 hrecipe = soup.find(True, 'hrecipe')

 if hrecipe and len(hrecipe) > 1:
 fn = hrecipe.find(True, 'fn').string
 author = hrecipe.find(True, 'author').find(text=True)
 ingredients = [i.string
 for i in hrecipe.findAll(True, 'ingredient')
 if i.string is not None]

 instructions = []
 for i in hrecipe.find(True, 'instructions'):
 if type(i) == BeautifulSoup.Tag:
 s = ''.join(i.findAll(text=True)).strip()
 elif type(i) == BeautifulSoup.NavigableString:
 s = i.string.strip()
 else:
 continue

 if s != '':
 instructions += [s]

 return {
 'name': fn,
 'author': author,
 'ingredients': ingredients,
 'instructions': instructions,
 }
 else:
 return {}

recipe = parse_hrecipe(url)
print json.dumps(recipe, indent=4)

36 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

For a sample URL such as Alton Brown’s acclaimed Pad Thai recipe, you should get
the results shown in Example 2-8.

Example 2-8. Parsed results for the Pad Thai recipe from Example 2-7

{
 "instructions": [
 "Place the tamarind paste in the boiling water and set aside ...",
 "Combine the fish sauce, palm sugar, and rice wine vinegar in ...",
 "Place the rice stick noodles in a mixing bowl and cover with ...",
 "Press the tamarind paste through a fine mesh strainer and add ...",
 "Place a wok over high heat. Once hot, add 1 tablespoon of the ...",
 "If necessary, add some more peanut oil to the pan and heat until ..."
],
 "ingredients": [
 "1-ounce tamarind paste",
 "3/4 cup boiling water",
 "2 tablespoons fish sauce",
 "2 tablespoons palm sugar",
 "1 tablespoon rice wine vinegar",
 "4 ounces rice stick noodles",
 "6 ounces Marinated Tofu, recipe follows",
 "1 to 2 tablespoons peanut oil",
 "1 cup chopped scallions, divided",
 "2 teaspoons minced garlic",
 "2 whole eggs, beaten",
 "2 teaspoons salted cabbage",
 "1 tablespoon dried shrimp",
 "3 ounces bean sprouts, divided",
 "1/2 cup roasted salted peanuts, chopped, divided",
 "Freshly ground dried red chile peppers, to taste",
 "1 lime, cut into wedges"
],
 "name": "Pad Thai",
 "author": "Recipe courtesy Alton Brown, 2005"
 }

Although it’s not really a form of social analysis, it could be interesting to analyze
variations of the same recipe and see whether there are any correlations between the
appearance or lack of certain ingredients and ratings/reviews for the recipes. For ex-
ample, you might try to pull down a few different Pad Thai recipes and determine which
ingredients are common to all recipes and which are less common.

Collecting Restaurant Reviews
This section concludes our studies of microformats—and Thai food—by briefly intro-
ducing hReview. Yelp is a popular service that implements hReview so that the ratings
customers have left for restaurants can be exposed. Example 2-9 demonstrates how to
extract hReview information as implemented by Yelp. A sample URL you might try is
in the sample code and represents a Thai restaurant you definitely don’t want to miss
if you ever have the opportunity to visit it.

Collecting Restaurant Reviews | 37

Although the spec is pretty stable, hReview implementations seem to
vary and include arbitrary deviations. In particular, Example 2-9 does
not parse the reviewer as an hCard because Yelp’s implementation did
not include it as such.

Example 2-9. Parsing hReview data for a Pad Thai recipe (microformats__yelp_hreview.py)

-*- coding: utf-8 -*-

import sys
import re
import urllib2
import json
import HTMLParser
from BeautifulSoup import BeautifulSoup

Pass in a URL that contains hReview info such as
http://www.yelp.com/biz/bangkok-golden-fort-washington-2

url = sys.argv[1]

Parse out some of the pertinent information for a Yelp review
Unfortunately, the quality of hReview implementations varies
widely so your mileage may vary. This code is *not* a spec
parser by any stretch. See http://microformats.org/wiki/hreview

def parse_hreviews(url):
 try:
 page = urllib2.urlopen(url)
 except urllib2.URLError, e:
 print 'Failed to fetch ' + url
 raise e

 try:
 soup = BeautifulSoup(page)
 except HTMLParser.HTMLParseError, e:
 print 'Failed to parse ' + url
 raise e

 hreviews = soup.findAll(True, 'hreview')

 all_hreviews = []
 for hreview in hreviews:
 if hreview and len(hreview) > 1:

 # As of 1 Jan 2010, Yelp does not implement reviewer as an hCard,
 # per the spec

 reviewer = hreview.find(True, 'reviewer').text

 dtreviewed = hreview.find(True, 'dtreviewed').text
 rating = hreview.find(True, 'rating').find(True, 'value-title')['title']
 description = hreview.find(True, 'description').text
 item = hreview.find(True, 'item').text

38 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

 all_hreviews.append({
 'reviewer': reviewer,
 'dtreviewed': dtreviewed,
 'rating': rating,
 'description': description,
 })
 return all_hreviews

reviews = parse_hreviews(url)

Do something interesting like plot out reviews over time
or mine the text in the descriptions...

print json.dumps(reviews, indent=4)

Truncated sample results for Example 2-9 are shown in Example 2-10. They include
the reviewer, which is parsed out of the hCard microformatted nodes, as its own object.

Example 2-10. Sample hReview results corresponding to Example 2-9

[
 {
 "reviewer": "Nick L.",
 "description": "Probably the best Thai food in the metro area...",
 "dtreviewed": "4/27/2009",
 "rating": "5"
 },

 ...truncated...

]

Unfortunately, neither Yelp, nor the Food Network, nor anyone else provides specific
enough information to tie reviewers together in very meaningful ways, but hopefully
that will change soon, opening up additional possibilities for the social web. In the
meantime, you might make the most with the data you have available and plot out the
average rating for a restaurant over time to see if it has improved or declined. Another
idea might be to mine the description fields in the text. See Chapters 7 and 8 for some
fodder on how that might work.

For brevity, the grunt work in massaging the JSON data into a single
list of output and loading it into a spreadsheet isn’t shown here, but a
spreadsheet of the data is available for download if you’re feeling espe-
cially lazy.

There’s no limit to the innovation that can happen when you combine geeks and food
data, as evidenced by the popularity of the recently published Cooking for Geeks, also
from O’Reilly. As the capabilities of food sites evolve to provide additional APIs, so will
the innovations that we see in this space.

Collecting Restaurant Reviews | 39

Summary
If you remember nothing else from this chapter, remember that microformats are a way
of decorating markup to expose specific types of structured information such as recipes,
contact information, and human relationships. Microformats have vast potential be-
cause they allow us to take existing content and make the data that’s in it explicit and
conformant to a predictable standard. Expect to see significant growth and interest in
microformats over the months ahead. You’ll also see amazing innovations based on
HTML5’s microdata as HTML5 gains market share. If you find yourself with copious
free time, be sure to check out Google’s Social Graph API. This is not to be confused
with Facebook’s RDFa-based Open Graph protocol or the related Graph API that’s
covered in Chapter 9, which includes an index of XFN, FOAF, and other publicly
declared connections.

40 | Chapter 2: Microformats: Semantic Markup and Common Sense Collide

CHAPTER 3

Mailboxes: Oldies but Goodies

This chapter introduces some fundamental tools and techniques for analyzing your
mail—a classic data staple of the Internet that despite all of the advances in social
networking will still be around for ages to come—to answer questions such as:

• Who sends out the most mail?

• Is there a particular time of the day (or day of the week) when the sender is most
likely to get a response to a question?

• Which people send the most messages among one another?

• What are the subjects of the liveliest discussion threads?

Although social media sites are racking up petabytes of near-real-time social data, there
is still the significant drawback that, unlike email, social networking data is centrally
managed by a service provider who gets to create the rules about exactly how you can
access it and what you can and can’t do with it.* Mail data, on the other hand, is largely
decentralized and is scattered across the Web in the form of rich mailing list discussions
about a litany of interesting topics. Although it’s true that service providers such as
Google and Yahoo! restrict your use of mailing list data if you retrieve it using their
services, there are slightly less formidable ways to mine the content that have a higher
probability of success: you can easily collect data yourself by subscribing to a list and
waiting for the box to start filling up, ask the list owner to provide you with an archive,
etc. Another interesting consideration is that unlike social media sites, enterprises gen-
erally have full control of their mailboxes and may want to perform aggregate analyses
and identify certain kinds of trends.

As you might have guessed, it’s not always easy (if possible at all) to find realistic social
data sets for purposes of illustration, but fortunately, this chapter has some of the most
realistic data imaginable: the public Enron data set.

* Quite understandably, nobody has had a good enough reason (yet) to be the first to defend against
multimillion-dollar litigation cases to find out whether the terms of use imposed by some social media sites
are even enforceable. Hence, the status quo (to date) has been to play by the rules and back down when
approached about possible infringements.

41

mbox: The Quick and Dirty on Unix Mailboxes
In case you haven’t come across an mbox file before, it’s basically just a large text file
of concatenated mail messages that are easily accessible by text-based tools. The be-
ginning of each message is signaled by a special From_ line formatted to the pattern
"From user@example.com Fri Dec 25 00:06:42 2009", where the date/time stamp is
asctime, a standardized fixed-width representation of a timestamp.

The mbox format is very common, and most mail clients provide an
“export” or “save as” option to export data to this format regardless of
the underlying implementation.

In an mbox file, the boundary between messages is determined by a From_ line preceded
(except for the first occurrence) by exactly two new lines. Example 3-1 is a small slice
from a fictitious mbox containing two messages.

Example 3-1. A slice of a sample mbox file

From santa@northpole.example.org Fri Dec 25 00:06:42 2009
Message-ID: <16159836.1075855377439@mail.northpole.example.org>
References: <88364590.8837464573838@mail.northpole.example.org>
In-Reply-To: <194756537.0293874783209@mail.northpole.example.org>
Date: Fri, 25 Dec 2001 00:06:42 -0000 (GMT)
From: St. Nick <santa@northpole.example.org>
To: rudolph@northpole.example.org
Subject: RE: FWD: Tonight
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Sounds good. See you at the usual location.

Thanks,
-S

 -----Original Message-----
From: Rudolph
Sent: Friday, December 25, 2009 12:04 AM
To: Claus, Santa
Subject: FWD: Tonight

Santa -

Running a bit late. Will come grab you shortly. Standby.

Rudy

Begin forwarded message:

> Last batch of toys was just loaded onto sleigh.

42 | Chapter 3: Mailboxes: Oldies but Goodies

>
> Please proceed per the norm.
>
> Regards,
> Buddy
>
> --
> Buddy the Elf
> Chief Elf
> Workshop Operations
> North Pole
> buddy.the.elf@northpole.example.org

From buddy.the.elf@northpole.example.org Fri Dec 25 00:03:34 2009
Message-ID: <88364590.8837464573838@mail.northpole.example.org>
Date: Fri, 25 Dec 2001 00:03:34 -0000 (GMT)
From: Buddy <buddy.the.elf@northpole.example.org>
To: workshop@northpole.example.org
Subject: Tonight
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Last batch of toys was just loaded onto sleigh.

Please proceed per the norm.

Regards,
Buddy

--
Buddy the Elf
Chief Elf
Workshop Operations
North Pole
buddy.the.elf@northpole.example.org

In Example 3-1 we see two messages, although there is evidence of at least one other
message that might exist in the mbox. Chronologically, the first message is authored
by a fellow named Buddy and was sent out to workshop@northpole.example.org to
announce that the toys had just been loaded. The other message in the mbox is a reply
from Santa to Rudolph. Not shown in the sample mbox is an intermediate message in
which Rudolph forwarded Buddy’s message to Santa with the note about how he is
running late. Although we could infer these things by reading the text of the messages
themselves, we also have important clues by way of the Message-ID, References, and
In-Reply-To headers. These headers are pretty intuitive and provide the basis for algo-
rithms that display threaded discussions and things of that nature. We’ll look at a well-
known algorithm that uses these fields to thread messages a bit later, but the gist is that
each message has a unique message ID, contains a reference to the exact message that
is being replied to in the case of it being a reply, and can reference multiple other
messages in the reply chain, which are part of the larger discussion thread at hand.

mbox: The Quick and Dirty on Unix Mailboxes | 43

Beyond using some Python modules to do the dirty work for us, we
won’t journey into discussions concerning the nuances of email mes-
sages such as multipart content, MIME, 7-bit content transfer encoding,
etc. You won’t have to look very hard to find a number of excellent
references that cover these topics in depth if you’re interested in taking
a closer look.

These headers are vitally important. Even with this simple example, you can already
see how things can get messy when you’re parsing the actual body of a message: Ru-
dolph’s client quoted forwarded content with > characters, while the mail client Santa
used to reply apparently didn’t quote anything, but instead included a human-readable
message header. Trying to parse out the exact flow of a conversation from mailbox data
can be a very tricky business, if not completely impossible, because of the ambiguity
involved. Most mail clients have an option to display extended mail headers beyond
the ones you normally see, if you’re interested in a technique a little more accessible
than digging into raw storage when you want to view this kind of information. Exam-
ple 3-2 illustrates the message flow from Example 3-1, and Figure 3-1 shows sample
headers as displayed by Apple Mail.

Figure 3-1. Most mail clients allow you to view the extended headers through an options menu

44 | Chapter 3: Mailboxes: Oldies but Goodies

Example 3-2. Message flow from Example 3-1

Fri, 25 Dec 2001 00:03:34 -0000 (GMT) - Buddy sends a message to the workshop
Friday, December 25, 2009 12:04 AM - Rudolph forwards Buddy's message to Santa
 with an additional note
Fri, 25 Dec 2001 00:06:42 -0000 (GMT) - Santa replies to Rudolph

Lucky for us, there’s a lot you can do without having to essentially reimplement a mail
client. Besides, if all you wanted to do was browse the mailbox, you’d simply import
it into a mail client and browse away, right? Although it’s a rote exercise, it’s worth
taking a moment to explore whether your mail client has an option to import/export
data in the mbox format so that you can use the tools in this chapter to slice and dice it.

Python offers some basic tools for parsing mbox data, and the script in Example 3-3
introduces a basic technique for converting mbox data to an array of JSON objects.

Note that Example 3-3 includes the decode('utf-8', 'ignore') func-
tion in several places. When working with text-based data such as email
or web pages, it’s not at all uncommon to run into the infamous Unico
deDecodeError because of funky character encodings, and it’s not always
obvious what’s going on or how to fix the problem. The short answer
is that you can run the decode function on any string value and pass it a
second argument that specifies what to do in the event of a UnicodeDe
codeError. The default value is 'strict', which results in the exception
being raised, but you can use 'ignore' or 'replace' instead, depending
on your needs.

Example 3-3. Converting an mbox to a more convenient JSON structure
(mailboxes__jsonify_mbox.py)

-*- coding: utf-8 -*-

import sys
import mailbox
import email
import quopri
from BeautifulSoup import BeautifulSoup

try:
 import jsonlib2 as json # much faster then Python 2.6.x's stdlib
except ImportError:
 import json

MBOX = sys.argv[1]

def cleanContent(msg):

 # Decode message from "quoted printable" format

 msg = quopri.decodestring(msg)

 # Strip out HTML tags, if any are present

mbox: The Quick and Dirty on Unix Mailboxes | 45

 soup = BeautifulSoup(msg)
 return ''.join(soup.findAll(text=True))

def jsonifyMessage(msg):
 json_msg = {'parts': []}
 for (k, v) in msg.items():
 json_msg[k] = v.decode('utf-8', 'ignore')

 # The To, CC, and Bcc fields, if present, could have multiple items
 # Note that not all of these fields are necessarily defined

 for k in ['To', 'Cc', 'Bcc']:
 if not json_msg.get(k):
 continue
 json_msg[k] = json_msg[k].replace('\n', '').replace('\t', '').replace('\r'
 , '').replace(' ', '').decode('utf-8', 'ignore').split(',')

 try:
 for part in msg.walk():
 json_part = {}
 if part.get_content_maintype() == 'multipart':
 continue
 json_part['contentType'] = part.get_content_type()
 content = part.get_payload(decode=False).decode('utf-8', 'ignore')
 json_part['content'] = cleanContent(content)

 json_msg['parts'].append(json_part)
 except Exception, e:
 sys.stderr.write('Skipping message - error encountered (%s)' % (str(e),))
 finally:
 return json_msg

Note: opening in binary mode is recommended
mbox = mailbox.UnixMailbox(open(MBOX, 'rb'), email.message_from_file)
json_msgs = []
while 1:
 msg = mbox.next()
 if msg is None:
 break
 json_msgs.append(jsonifyMessage(msg))

print json.dumps(json_msgs, indent=4)

As of Python 2.6.x, third-party C-based modules such as jsonlib2
(available via easy_install) are significantly faster than the standard
library’s module, but Python 2.7 ships with an update that’s on par with
modules such as jsonlib2. For the purposes of illustration, the differ-
ence between using the standard library versus jsonlib2 for reasonably
large JSON structures (north of 100 MB) can be on the order of tens of
seconds.

46 | Chapter 3: Mailboxes: Oldies but Goodies

This short script does a pretty decent job of parsing out the most pertinent information
from an email and builds out a portable JSON object. There’s more that we could do,
but it addresses some of the most common issues, including a primitive mechanism for
decoding quoted-printable text and stripping out any HTML tags. The quopri module
is used to handle the quoted-printable format, an encoding that is used to transfer 8-
bit content over a 7-bit channel.† Abbreviated sample output from Example 3-3 follows
in Example 3-4.

Example 3-4. Sample JSON output as produced by Example 3-3 from the sample mbox in Example 3-1

[
 {
 "From": "St. Nick <santa@northpole.example.org>",
 "Content-Transfer-Encoding": "7bit",
 "To": [
 "rudolph@northpole.example.org"
],
 "parts": [
 {
 "content": "Sounds good. See you at the usual location.\n\nThanks,...",
 "contentType": "text/plain"
 }
],
 "References": "<88364590.8837464573838@mail.northpole.example.org>",
 "Mime-Version": "1.0",
 "In-Reply-To": "<194756537.0293874783209@mail.northpole.example.org>",
 "Date": "Fri, 25 Dec 2001 00:06:42 -0000 (GMT)",
 "Message-ID": "<16159836.1075855377439@mail.northpole.example.org>",
 "Content-Type": "text/plain; charset=us-ascii",
 "Subject": "RE: FWD: Tonight"
 },
 {
 "From": "Buddy <buddy.the.elf@northpole.example.org>",
 "Content-Transfer-Encoding": "7bit",
 "To": [
 "workshop@northpole.example.org"
],
 "parts": [
 {
 "content": "Last batch of toys was just loaded onto sleigh. \n\n...",
 "contentType": "text/plain"
 }
],
 "Mime-Version": "1.0",
 "Date": "Fri, 25 Dec 2001 00:03:34 -0000 (GMT)",
 "Message-ID": "<88364590.8837464573838@mail.northpole.example.org>",
 "Content-Type": "text/plain; charset=us-ascii",
 "Subject": "Tonight"
 }
]

† See http://en.wikipedia.org/wiki/Quoted-printable for an overview, or RFC 2045 if you are interested in the
nuts and bolts.

mbox: The Quick and Dirty on Unix Mailboxes | 47

With your newly found skills to parse mail data into an accessible format, the urge to
start analyzing it is only natural. The remainder of this chapter will use the publicly
available Enron mail data, available as mbox downloads. The enron.mbox.gz file is an
mbox constructed from messages appearing in “inbox” folders from the original Enron
corpus, while the enron.mbox.json.gz file is that same data converted to JSON with the
script shown in Example 3-3. Although not shown as an example, you can download
the script that performed the conversion of raw Enron data to the mbox format with
the mailboxes__convert_enron_inbox_to_mbox.py script. Note that if you search on-
line, you’ll find that the closest thing to the official Enron data available at http://www
.cs.cmu.edu/~enron/ is available in a nonstandard format that’s a little more suited to
research and includes calendaring information, notes, etc. The script that was used to
convert the portions of this data set explicitly marked as “Inbox data” into the mbox
format is available at http://github.com/ptwobrussell/Mining-the-Social-Web/blob/mas
ter/python_code/mailboxes__convert_enron_inbox_to_mbox.py. The remainder of this
chapter assumes that you are using the mbox data that is provided as downloads.

mbox + CouchDB = Relaxed Email Analysis
Using the right tool for the job can significantly streamline the effort involved in ana-
lyzing data. While the most obvious approach for analyzing the structured data might
be to spend some extra time creating an a priori schema, importing data into it, mod-
ifying the schema because there’s something we forgot about, and then repeating the
process yet a few more times, this surely wouldn’t be a very relaxing‡ thing to do. Given
the very natural mapping between the document-centric nature of an email message
and a JSON data structure, we’ll import our mbox data into CouchDB, a document-
oriented database that provides map/reduce capabilities that are quite nice for building
up indexes on the data and performing an aggregate frequency analysis that answers
questions such as, “How many messages were sent by so-and-so?” or “How many
messages were sent out on such-and-such a date?”

A full-blown discussion about CouchDB, where it fits into the overall
data storage landscape, and many of its other unique capabilities outside
the ones most germane to basic analysis is outside the scope of this book.
However, it should be straightforward enough to follow along with this
section even if you’ve never heard of CouchDB before.

‡ CouchDB folks tend to overuse the word “relax,” and this discussion follows suit in an effort to be as authentic
as possible.

48 | Chapter 3: Mailboxes: Oldies but Goodies

Another nice benefit of using CouchDB for the task of document analysis is that it
provides an entirely REST-based interface that you can integrate into any web-based
architecture, as well as trivial-to-use replication capabilities that are handy if you’d like
to allow others to clone your databases (and analyses).

RESTful Web Services
REST (REpresentational State Transfer) is an architectural style that was canonized as
a PhD dissertation by Roy Fielding, but you don’t actually have to read the dissertation
to get the gist of it. While entire books have been written about REST, understanding
a few key principles should suffice for our purposes: clients and servers should engage
in stateless communication, and URIs should describe resources that can be acted upon
by standard HTTP verbs such as GET, PUT, POST, HEAD, and DELETE. For example,
the hierarchical URL http://example.com/blog might describe a “blog” resource. A GET
on that resource would fetch it, whereas a PUT on the context /blog/foo might create
a new blog for user “foo.” A DELETE on the context /blog/foo would delete the blog,
and a POST /blog/foo might append a new blog post to foo’s blog. The book RESTful
Web Services (O’Reilly) is a great resource to have on hand if you’d like to take a more
serious look at REST and want to see lots of practical examples for handling not-so-
obvious situations.

The remainder of this section assumes that you’re able to locate and install a CouchDB
binary for your system, or compile and install it from source if that’s the way you roll.
You might want to check out CouchOne, a company staffed by the creator of and
primary committers for CouchDB, which provides binary downloads for most plat-
forms and also offers some free CouchDB hosting options that you might find useful.
Cloudant is another online hosting option you might want to consider.

As you’re getting warmed up, you might just think of CouchDB as a key-value store
where keys are arbitrary identifiers and values are JSON-based documents of your own
devising. Figure 3-2 illustrates a collection of documents, as well as individual docu-
ment in the collection via Futon, CouchDB’s web-based administrative interface. You
can access Futon on your local installation at http://localhost:5984/_utils/.

mbox + CouchDB = Relaxed Email Analysis | 49

Figure 3-2. An aggregate view of the Enron database and one of its individual documents

Once CouchDB is installed, the other administrative task you’ll need to perform is
installing the Python client module couchdb via the usual easy_install couchdb ap-
proach. You can read more about couchdb via pydoc or online at http://packages.python
.org/CouchDB/. With CouchDB and a Python client now installed, it’s time to relax
and lay down some code to ingest our JSONified mbox data—but do feel free to take

50 | Chapter 3: Mailboxes: Oldies but Goodies

a few minutes to play around in Futon if this is your first encounter with CouchDB. If
playing things by ear doesn’t make you feel very relaxed, you should take a brief time-
out to skim the first few chapters of CouchDB: The Definitive Guide (O’Reilly), which
is available online at http://books.couchdb.org/relax.

Bulk Loading Documents into CouchDB
Running the script from Example 3-3 on the uncompressed enron.mbox file and redi-
recting the output to a file yields a fairly large JSON structure (approaching 200 MB).
The script provided in Example 3-5 demonstrates how to load the data as-is into
CouchDB using couchdb-python, which you should have already installed via
easy_install couchdb. (You have to admit that the code does look pretty relaxing
compared to the alternative gobs that would be required to load a relational schema.)
Note that it may take a couple of minutes for the script to complete if you are using
typical consumer hardware such as a laptop computer.§ At first, a couple of minutes
might seem a bit slow, but when you consider that the JSON structure contains more
than 40,000 objects that get written out as CouchDB documents, that’s north of 300
document transactions per second, which is actually quite reasonable for performance
on an ordinary laptop. Using a performance-monitoring utility such as top on a *nix
system or the Task Manager on Windows should reveal that one core of your CPU is
being pegged out, which would indicate maximum throughput. During development,
it’s a good idea to work with a smaller set of documents than your full data set. You
can easily slice out a dozen or so of the JSONified Enron messages to follow along with
the examples in this chapter.

Although Erlang, CouchDB’s underlying programming language, is well
known for being a language that supports high concurrency, this doesn’t
mean that CouchDB or any other application platform built using Er-
lang can necessarily keep all of the cores across all available CPUs run-
ning hot. For example, in CouchDB, write operations to a database are
append-only operations that are serialized to the B-Tree on disk, and
even large numbers of batch writes cannot easily be spread out across
more than one core. In that regard, there is a one-to-one mapping be-
tween databases and cores for write operations. However, you could
perform batch writes to multiple databases at the same time and max-
imize throughput across more than one core.

§ For the purposes of comparison, it takes about two minutes to execute Example 3-5 on a MacBook Pro
2.8GHz Core 2 Duo with CouchDB 0.11.0 installed using stock settings.

mbox + CouchDB = Relaxed Email Analysis | 51

Example 3-5. A short script that demonstrates loading JSON data into CouchDB
(mailboxes__load_json_mbox.py)

-*- coding: utf-8 -*-

import sys
import os
import couchdb
try:
 import jsonlib2 as json
except ImportError:
 import json

JSON_MBOX = sys.argv[1] # i.e. enron.mbox.json
DB = os.path.basename(JSON_MBOX).split('.')[0]

server = couchdb.Server('http://localhost:5984')
db = server.create(DB)
docs = json.loads(open(JSON_MBOX).read())
db.update(docs, all_or_nothing=True)

With the data loaded, it might be tempting to just sit back and relax for a while, but
browsing through some of it with Futon begins to stir up some questions about the
nature of who is communicating, how often, and when. Let’s put CouchDB’s map/
reduce functionality to work so that we can answer some of these questions.

If you’re not all that up-to-speed on map/reduce, don’t fret: learning
more about it is part of what this section is all about.

In short, mapping functions take a collection of documents and map out a new key/
value pair for each document, while reduction functions take a collection of documents
and reduce them in some way. For example, computing the arithmetic sum of squares,
f(x) = x1

2 + x2
2 + ... + xn

2, could be expressed as a mapping function that squares each
value, producing a one-to-one correspondence for each input value, while the reducer
simply sums the output of the mappers and reduces it to a single value. This program-
ming pattern lends itself well to trivially parallelizable problems but is certainly not a
good (performant) fit for every problem. It should be clear that using CouchDB for a
problem necessarily requires making some assumptions about the suitability of this
computing paradigm for the task at hand.

Sensible Sorting
It may not be immediately obvious, but if you take a closer look at Figure 3-2, you’ll
see that the documents you just ingested into CouchDB are sorted by key. By default,
the key is the special _id value that’s automatically assigned by CouchDB itself, so sort
order is pretty much meaningless at this point. In order to browse the data in Futon in

52 | Chapter 3: Mailboxes: Oldies but Goodies

a more sensible manner, as well as performing efficient range queries, we’ll want to
perform a mapping operation to create a view that sorts by something else. Sorting by
date seems like a good idea and opens the door to certain kinds of time-series analysis,
so let’s start there and see what happens. But first, we’ll need to make a small config-
uration change so that we can write our map/reduce functions to perform this task in
Python.

CouchDB is especially intriguing in that it’s written in Erlang, a language engineered
to support super-high concurrency‖ and fault tolerance. The de facto out-of-the-box
language you use to query and transform your data via map/reduce functions is Java-
Script. Note that we could certainly opt to write map/reduce functions in JavaScript
and realize some benefits from built-in JavaScript functions CouchDB offers—such as
_sum, _count, and _stats. But the benefit gained from your development environment’s
syntax checking/highlighting may prove more useful and easier on the eyes than staring
at JavaScript functions wrapped up as triple-quoted string values that exist inside of
Python code. Besides, assuming you have couchdb installed, a small configuration tweak
is all that it takes to specify a Python view server so that you can write your CouchDB
code in Python. More precisely speaking, in CouchDB parlance, the map/reduce func-
tions are said to be view functions that reside in a special document called a design
document.

Simply insert the following line (or a Windows compatible equivalent) into the appro-
priate section of CouchDB’s local.ini configuration file, where the couchpy executable
is a view server that will have been automatically installed along with the couchdb mod-
ule. Don’t forget to restart CouchDB after making the change:

[query_servers] python = /path/to/couchpy

If you’re having trouble locating your couchpy executable on a *nix en-
vironment, try using which couchpy in a terminal session to find its ab-
solute path. For Windows folks, using the easy_install provided by
ActivePython should place a couchpy.exe file in C:\PythonXY\Scripts.
Watching the output when you easy_install couchdb reveals this
information.

Unless you want to write gobs and gobs of code to parse inherently variable date strings
into a standardized format, you’ll also want to easy_install dateutil. This is a life-
saving package that standardizes most date formats, since you won’t necessarily know
what you’re up against when it comes to date stamps from a messy email corpus.
Example 3-6 demonstrates script mapping documents by their date/time stamps that
you should be able to run on the sample data we imported after configuring your

‖ Generally speaking, the characteristic of having “high concurrency” means that multiple operations can be
run at the same time (concurrently) across multiple cores on a microprocessor, yielding maximum CPU
throughput.

mbox + CouchDB = Relaxed Email Analysis | 53

CouchDB for Python. Sample output is just a list of the documents matching the query
and is omitted for brevity.

Example 3-6. A simple mapper that uses Python to map documents by their date/time stamps
(mailboxes__map_json_mbox_by_date_time.py)

-*- coding: utf-8 -*-

import sys
import couchdb
from couchdb.design import ViewDefinition
try:
 import jsonlib2 as json
except ImportError:
 import json

DB = sys.argv[1]
START_DATE = sys.argv[2] #YYYY-MM-DD
END_DATE = sys.argv[3] #YYYY-MM-DD

server = couchdb.Server('http://localhost:5984')
db = server[DB]

def dateTimeToDocMapper(doc):

 # Note that you need to include imports used by your mapper
 # inside the function definition

 from dateutil.parser import parse
 from datetime import datetime as dt
 if doc.get('Date'):
 # [year, month, day, hour, min, sec]
 _date = list(dt.timetuple(parse(doc['Date']))[:-3])
 yield (_date, doc)

Specify an index to back the query. Note that the index won't be
created until the first time the query is run

view = ViewDefinition('index', 'by_date_time', dateTimeToDocMapper,
 language='python')
view.sync(db)

Now query, by slicing over items sorted by date

start = [int(i) for i in START_DATE.split("-")]
end = [int(i) for i in END_DATE.split("-")]
print 'Finding docs dated from %s-%s-%s to %s-%s-%s' % tuple(start + end)

docs = []
for row in db.view('index/by_date_time', startkey=start, endkey=end):
 docs.append(db.get(row.id))
print json.dumps(docs, indent=4)

54 | Chapter 3: Mailboxes: Oldies but Goodies

The most fundamentally important thing to understand about the code is the role of
the function dateTimeToDocMapper, a custom generator.# It accepts a document as a
parameter and emits the same document; however, the document is keyed by a con-
venient date value that lends itself to being easily manipulated and sorted. Note that
mapping functions in CouchDB are side-effect-free; regardless of what takes place in
the mapping function or what the mapping function emits, the document passed in as
a parameter remains unaltered. In CouchDB-speak, the dateTimeToDocMapper is a
view named “by_date_time” that’s part of a design document called “index.” Taking a
look at Futon, you can change the combo box value in the upper-right corner from “All
documents” to “Design documents” and verify for yourself, as shown in Figure 3-3.
You can also take a look at the pydoc for ViewDefinition for more of the same.

The first time you run the code, it should take somewhere on the order of five minutes
to perform the mapping function and will keep one of your cores pegged out for most
of that duration. About 80% of that time is dedicated to building the index, while the
remaining time is taken up with performing the query. However, note that the index
only needs to be established one time, so subsequent queries are relatively efficient,
taking around 20 seconds to slice out and return approximately 2,200 documents for
the date range specified, which is around 110 documents per second.

The key takeaway from this mapping function is that all of your documents are indexed
by date, as can be verified in Futon by choosing the “by_date_time” index value in the
“View” combo box in the upper-right corner of the screen, as shown in Figure 3-4.
Although sorting documents by some criterion may not be the most interesting activity
in the world, it’s a necessary step in many aggregate analytic functions, such as counting
the number of documents that meet a specific criterion across an entire corpus. The
next section demonstrates some basic building blocks for such analysis.

Map/Reduce-Inspired Frequency Analysis
Tabulating frequencies is usually one of the first exploratory tasks you’ll want to con-
sider when faced with a new data set, because it can tell you so much with so little
effort. This section investigates a couple of ways you can use CouchDB to build
frequency-based indexes.

Frequency by date/time range

While our by_date_time index did a fine job of creating an index that sorts documents
by date/time, it’s not a useful index for counting the frequencies of documents trans-
mitted by common boundaries such as the year, month, week, etc. While we could
certainly write client code that would calculate frequencies from a call to db.view('in
dex/by_date_time', startkey=start, endkey=end), it would be more efficient (and re-
laxing) to let CouchDB do this work for us. All that’s needed is a trivial change to our

#Loosely speaking, a generator is a function that returns an iterator. See http://docs.python.org/tutorial/classes
.html.

mbox + CouchDB = Relaxed Email Analysis | 55

mapping function and the introduction of a reducing function that’s just as trivial. The
mapping function will simply emit a value of 1 for each date/time stamp, and the re-
ducer will count the number of keys that are equivalent. Example 3-7 illustrates this
approach. Note that you’ll need to easy_install prettytable, a package that produces
nice tabular output, before running this example.

Figure 3-3. Inspecting design documents in Futon

56 | Chapter 3: Mailboxes: Oldies but Goodies

Figure 3-4. Documents are now sorted by date/time values

It’s incredibly important to understand that reducing functions only
operate on values that map to the same key. A full-blown introduction
to map/reduce is beyond our scope, but there are a number of useful
resources online, including a page in the CouchDB wiki and a Java-
Script-based interactive tool. The ins and outs of reducers are discussed
further in “A Note on rereduce” on page 128. None of the examples in
this chapter necessarily need to use the rereduce parameter, but to re-
mind you that it exists and is very important for some situations, it is
explicitly listed in all examples.

Example 3-7. Using a mapper and a reducer to count the number of messages written by date
(mailboxes__count_json_mbox_by_date_time.py)

-*- coding: utf-8 -*-

import sys
import couchdb
from couchdb.design import ViewDefinition
from prettytable import PrettyTable

DB = sys.argv[1]

mbox + CouchDB = Relaxed Email Analysis | 57

server = couchdb.Server('http://localhost:5984')
db = server[DB]

def dateTimeCountMapper(doc):
 from dateutil.parser import parse
 from datetime import datetime as dt
 if doc.get('Date'):
 _date = list(dt.timetuple(parse(doc['Date']))[:-3])
 yield (_date, 1)

def summingReducer(keys, values, rereduce):
 return sum(values)

view = ViewDefinition('index', 'doc_count_by_date_time', dateTimeCountMapper,
 reduce_fun=summingReducer, language='python')
view.sync(db)

Print out message counts by time slice such that they're
grouped by year, month, day

fields = ['Date', 'Count']
pt = PrettyTable(fields=fields)
[pt.set_field_align(f, 'l') for f in fields]

for row in db.view('index/doc_count_by_date_time', group_level=3):
 pt.add_row(['-'.join([str(i) for i in row.key]), row.value])

pt.printt()

If you need to debug mappers or reducers written in Python, you’ll find
that printing output to the console doesn’t work. One approach you
can use that does work involves appending information to a file. Just
remember to open the file in append mode with the 'a' option: e.g.,
open('debug.log', 'a').

To summarize, we create a view named doc_count_by_date_time that’s stored in the
index design document; it consists of a mapper that emits a date key for each document,
and a reducer that takes whatever input it receives and returns the sum of it. The missing
link you may be looking for is how the summingReducer function works. In this particular
example, the reducer simply computes the sum of all values for documents that have
matching keys, which amounts to counting the number of documents that have match-
ing keys. The way that CouchDB reducers work in general is that they are passed cor-
responding lists of keys and values, and a custom function generally performs some
aggregate operation (such as summing them up, in this case). The rereduce parameter
is a device that makes incremental map/reduce possible by handling the case where the
results of a reducer have to themselves be reduced. No special handling of cases in-
volving rereducing is needed for the examples in this chapter, but you can read more

58 | Chapter 3: Mailboxes: Oldies but Goodies

about rereducing in “A Note on rereduce” on page 128 or online if you anticipate
needing it.

The group_level parameter is what allows us to perform frequency analyses by various
date/time granularities associated with our key. Conceptually, CouchDB uses this pa-
rameter to slice the first N components of the key and automatically performs reduce
operations on matching key/value pairs. In our situation, this means calculating sums
for keys that have the first N matching components. Observe that if the reducer were
passed the full date/time key, which is specific down to the second, we’d be querying
for emails that were sent out at exactly the same time, which probably wouldn’t be
useful. Passing in only the first component of the date/time key would tally the number
of emails sent out by year, passing in the first two components would tally the number
of emails sent out by month, etc. The group_level keyword argument passed to the
db.view function is how you can control what part of the key CouchDB passes into the
reducer. After running the code to compute the underlying indexes, you can explore
this functionality in Futon, as shown in Figure 3-5.

Figure 3-5. You can explore the group_by option using Futon

The amount of time it takes for dateTimeCountMapper to execute during the creation of
the index that backs the doc_count_by_date_time view is on par with the previous map-
ping function you’ve seen, and it yields the ability to run a number of useful queries by
altering the group_level parameter. Keep in mind that many alternative strategies, such
as keying off of the number of milliseconds since the epoch, are also possible and may
be useful for situations in which you are querying on a boundary that’s not a year,
month, week, etc. You’d have to emit the milliseconds since the epoch as the key in

mbox + CouchDB = Relaxed Email Analysis | 59

your mapper and pass in keyword arguments for startkey and endkey in db.view. No
reducer would necessarily be needed.

What if you wanted to do time-based analysis that is independent of the day, such as
the number of documents that are sent out on any given hour of the day? The grouping
behavior of view queries takes advantage of the underlying structure of the B-Tree that
backs a database, so you can’t directly group by arbitrary items in the key in an analo-
gous way to a Python list slice, such as k[4:-2] or k[4:5]. For this type of query, you’d
probably want to construct a new key with a suitable prefix, such as [hour, minute,
second]. Filtering in the client would require iterating over the entire document col-
lection without the added benefit of having an index constructed for you for subsequent
queries.

B-Trees Are the Bee’s Knees?
B-Trees are the fundamental underlying data structure for CouchDB and most other
database systems because they exhibit logarithmic performance for core operations
(inserts, updates, deletes) over the long haul, even when continually faced with worst-
case situations. B-Trees necessarily remain balanced and maintain data in sorted order.
These characteristics yield efficient lookups because the underlying implementations
require minimal disk reads. Given that disk seeks for traditional platter-based hard
drives are still fast (on the order of low single-digit milliseconds), this means that huge
volumes of data as stored by B-Trees can be accessed just as quickly.

In case you’re wondering, there’s no complete consensus about the etymology of the
name “B-Tree,” but it’s generally accepted that the “B” stands for Bayer, the fellow who
is credited with inventing them. There is more information about B-Trees and their
common variants online than you’d probably care to read. If you decide to take the
deep dive into CouchDB, it’s probably worth your while to learn as much about them
at the theoretical and practical implementation levels as possible since they are so in-
tegral to CouchDB’s design.

Frequency by sender/recipient fields

Other metrics, such as how many messages a given person originally authored, how
many direct communications occurred between any given group of people, etc., are
highly relevant statistics to consider as part of email analysis. Example 3-8 demonstrates
how to calculate the number of times any two people communicated by considering
the To and From fields of a message. Obviously, inclusion of Cc and Bcc fields could
hold special value as well, depending on the question you are asking. The only sub-
stantive difference between this listing and Example 3-6 is that the mapping function
potentially yields multiple key/value pairs. You’ll find that the pattern demonstrated
can be minimally modified to compute many kinds of aggregate operations.

60 | Chapter 3: Mailboxes: Oldies but Goodies

Example 3-8. Mapping and reducing by sender and recipient
(mailboxes__count_json_mbox_by_sender_recipient.py)

-*- coding: utf-8 -*-

import sys
import couchdb
from couchdb.design import ViewDefinition
from prettytable import PrettyTable

DB = sys.argv[1]

server = couchdb.Server('http://localhost:5984')
db = server[DB]

def senderRecipientCountMapper(doc):
 if doc.get('From') and doc.get('To'):
 for recipient in doc['To']:
 yield ([doc['From'], recipient], 1)

def summingReducer(keys, values, rereduce):
 return sum(values)

view = ViewDefinition('index', 'doc_count_by_sender_recipient',
 senderRecipientCountMapper, reduce_fun=summingReducer,
 language='python')
view.sync(db)

print out a nicely formatted table
fields = ['Sender', 'Recipient', 'Count']
pt = PrettyTable(fields=fields)
[pt.set_field_align(f, 'l') for f in fields]

for row in db.view('index/doc_count_by_sender_recipient', group=True):
 pt.add_row([row.key[0], row.key[1], row.value])

pt.printt()

Sorting Documents by Value
CouchDB’s tenacious sorting of the documents in a database by key is useful for lots
of situations, but there are other occasions when you’ll want to sort by value. As a case
in point, it would be really useful to sort the results of Example 3-7 by frequency so
that we can see the “top N” results. For small data sets, a fine option is to just perform
a client-side sort yourself. Virtually every programming language has a solid imple-
mentation of the quicksort algorithm that exhibits reasonable combinatorics for the
average case.*

* On average, quicksort makes n*lg(n) comparisons to sort a collection in the worst case, which is about the
best you can do without knowing any prior information to tailor the algorithm to the data.

mbox + CouchDB = Relaxed Email Analysis | 61

For larger data sets or more niche situations, however, you may want to consider some
alternatives. One approach is to transpose the reduced documents (the same ones
shown in Figure 3-5, for example) and load them into another database such that the
sorting can take place automatically by key. While this approach may seem a bit
roundabout, it doesn’t actually require very much effort to implement, and it does have
the performance benefit that operations among different databases map out to different
cores if the number of documents being exported is large. Example 3-9 demonstrates
this approach.

Example 3-9. Sorting documents by key by using a transpose mapper and exporting to another
database (mailboxes__sort_by_value_in_another_db.py)

-*- coding: utf-8 -*-

import sys
import couchdb
from couchdb.design import ViewDefinition
from prettytable import PrettyTable

DB = sys.argv[1]

server = couchdb.Server('http://localhost:5984')
db = server[DB]

Query out the documents at a given group level of interest
Group by year, month, day

docs = db.view('index/doc_count_by_date_time', group_level=3)

Now, load the documents keyed by [year, month, day] into a new database

db_scratch = server.create(DB + '-num-per-day')
db_scratch.update(docs)

def transposeMapper(doc):
 yield (doc['value'], doc['key'])

view = ViewDefinition('index', 'num_per_day', transposeMapper, language='python')
view.sync(db_scratch)

fields = ['Date', 'Count']
pt = PrettyTable(fields=fields)
[pt.set_field_align(f, 'l') for f in fields]

for row in db_scratch.view('index/num_per_day'):
 if row.key > 10: # display stats where more than 10 messages were sent
 pt.add_row(['-'.join([str(i) for i in row.value]), row.key])

62 | Chapter 3: Mailboxes: Oldies but Goodies

While sorting in the client and exporting to databases are relatively straightforward
approaches that scale well for relatively simple situations, there’s a truly industrial-
strength Lucene-based solution for comprehensive indexing of all shapes and sizes. The
next section investigates how to use couchdb-lucene for text-based indexing—Lucene’s
bread and butter—but many other possibilities, such as sorting documents by value,
indexing geolocations, etc., are also well within reach.

couchdb-lucene: Full-Text Indexing and More
Lucene is a Java-based search engine library for high-performance full-text indexing;
its most common use is for trivially integrating keyword search capabilities into an
application. The couchdb-lucene project is essentially a web service wrapper around
some of Lucene’s most central functionality, which enables it to index CouchDB docu-
ments. couchdb-lucene runs as a standalone Java Virtual Machine (JVM) process that
communicates with CouchDB over HTTP, so you can run it on a totally separate ma-
chine if you have the hardware available.

Even a modest tutorial that scratches the surface of all that Lucene and couchdb-
lucene can do for you would be wandering a little too far off the path. However, we
will work through a brief example that demonstrates how to get up and running with
these tools in the event that you find full-text indexing to be essential for your tasks at
hand. If full-text indexing isn’t something you necessarily need at this time, feel free to
skip this section and come back to it later. For comparative purposes, note that it’s
certainly possible to perform text-based indexing by writing a simple mapping function
that associates keywords and documents, like the one in Example 3-10.

Example 3-10. A mapper that tokenizes documents

def tokenizingMapper(doc):
 tokens = doc.split()
 for token in tokens:
 if isInteresting(token): # Filter out stop words, etc.
 yield token, doc

However, you’ll quickly find that you need to do a lot more homework about basic
Information Retrieval (IR) concepts if you want to establish a good scoring function to
rank documents by relevance or anything beyond basic frequency analysis. Fortunately,
the benefits of Lucene are many, and chances are good that you’ll want to use couchdb-
lucene instead of writing your own mapping function for full-text indexing.

Unlike the previous sections that opted to use the couchdb module, this
section uses httplib to exercise CouchDB’s REST API directly and in-
cludes view functions written in JavaScript. It seems a bit convoluted to
attempt otherwise.

mbox + CouchDB = Relaxed Email Analysis | 63

Binary snapshots and instructions for installing couchdb-lucene are available at http://
github.com/rnewson/couchdb-lucene. The necessary configuration details are available
in the README file, but the short of it is that, with Java installed, you’ll need to execute
couchdb-lucene’s run script, which fires up a web server and makes a few minor changes
to CouchDB’s local.ini configuration file so that couchdb-lucene can communicate with
CouchDB over HTTP. The key configuration changes to make are documented in
couchdb-lucene’s README. Example 3-11 demonstrates.

Windows users who are interested in acquiring a service wrapper for
couchdb-lucene may want to be advised of its potential obsolescence as
of October 2010 per this discussion thread: http://www.apacheserver
.net/CouchDB-lucene-windows-service-wrapper-at1031291.htm.

Example 3-11. Configuring CouchDB to be couchdb-lucene-aware

[couchdb]
os_process_timeout=300000 ; increase the timeout from 5 seconds.

[external]
fti=/path/to/python /path/to/couchdb-lucene/tools/couchdb-external-hook.py

[httpd_db_handlers]
_fti = {couch_httpd_external, handle_external_req, <<"fti">>}

In short, we’ve increased the timeout to 5 minutes and defined a custom behavior called
fti (full text index) that invokes functionality in a couchdb-external-hook.py script
(supplied with couchdb-lucene) whenever an _fti context for a database is invoked.
This script in turn communicates with the JVM (Java process) running Lucene to pro-
vide full-text indexing. These details are interesting, but you don’t necessarily have to
get bogged down with them unless that’s the way you roll.

Once couchdb-lucene is up and running, try executing the script in Example 3-12, which
performs a default indexing operation on the Subject field as well as the content of each
document in a database. Keep in mind that with a text-based index on the subject and
content of each message, you’re fully capable of using the normal Lucene query syntax
to gain granular control of your search. However, the default keyword capabilities are
often sufficient.

Example 3-12. Using couchdb-lucene to get full-text indexing

-*- coding: utf-8 -*-

import sys
import httplib
from urllib import quote
import json

DB = sys.argv[1]
QUERY = sys.argv[2]

64 | Chapter 3: Mailboxes: Oldies but Goodies

The body of a JavaScript-based design document we'll create

dd = \
 {'fulltext': {'by_subject': {'index': '''function(doc) {
 var ret=new Document();
 ret.add(doc.Subject);
 return ret
 }'''},
 'by_content': {'index': '''function(doc) {
 var ret=new Document();
 for (var i=0; i < doc.parts.length; i++) {
 ret.add(doc.parts[i].content);
 }
 return ret
 }'''}}}

Create a design document that'll be identified as "_design/lucene"
The equivalent of the following in a terminal:
$ curl -X PUT http://localhost:5984/DB/_design/lucene -d @dd.json

try:
 conn = httplib.HTTPConnection('localhost', 5984)
 conn.request('PUT', '/%s/_design/lucene' % (DB,), json.dumps(dd))
 response = conn.getresponse()
finally:
 conn.close()

if response.status != 201: # Created
 print 'Unable to create design document: %s %s' % (response.status,
 response.reason)
 sys.exit()

Querying the design document is nearly the same as usual except that you reference
couchdb-lucene's _fti HTTP handler
$ curl http://localhost:5984/DB/_fti/_design/lucene/by_subject?q=QUERY

try:
 conn.request('GET', '/%s/_fti/_design/lucene/by_subject?q=%s' % (DB,
 quote(QUERY)))
 response = conn.getresponse()
 if response.status == 200:
 response_body = json.loads(response.read())
 print json.dumps(response_body, indent=4)
 else:
 print 'An error occurred fetching the response: %s %s' \
 % (response.status, response.reason)
finally:
 conn.close()

You’ll certainly want to reference the online couchdb-lucene documentation for the full
scoop, but the gist is that you create a specially formatted design document that con-
tains a fulltext field, which houses the name of an index and a JavaScript-based in-
dexing function. That indexing function returns a Document object containing fields that

mbox + CouchDB = Relaxed Email Analysis | 65

Lucene should index. Note that the Document object is defined by couchdb-lucene (not
CouchDB) when your index is built. A sample query result for the infamous word
“raptor”† returns the response shown in Example 3-13. Notice that you’d use the id
values to look up documents for display for further analysis from CouchDB directly.

Example 3-13. Sample query results for “raptor” on the Enron data set

/* Sample query results for
http://localhost:5984/enron/_fti/_design/lucene/by_content?q=raptor */

{ "etag" : "11b7c665b2d78be0",
 "fetch_duration" : 2,
 "limit" : 25,
 "q" : "default:raptor",
 "rows" : [{ "id" : "3b2c340c28782c8986737c35a355d0eb",
 "score" : 1.4469228982925415
 },
 { "id" : "3b2c340c28782c8986737c35a3542677",
 "score" : 1.3901585340499878
 },
 { "id" : "3b2c340c28782c8986737c35a357c6ae",
 "score" : 1.375900149345398
 },

 /* ... output truncated ... */

 { "id" : "2f84530cb39668ab3cdab83302e56d65",
 "score" : 0.8107569217681885
 }
],
 "search_duration" : 0,
 "skip" : 0,
 "total_rows" : 72
 }

Full details about the response are available in the documentation, but the most inter-
esting part is the collection of rows containing document ID values that you can use to
access the documents in CouchDB. In terms of data flow, you should note that you
haven’t directly interacted with couchdb-lucene at all, per se; you’ve simply defined a
specially crafted design document and issued a query to CouchDB, which knows what
to do based on the presence of fulltext and _fti in the design document and query,
respectively. A discussion of Lucene’s specific techniques for scoring documents is
outside the scope of this book, but you can read more about it in its scoring documen-
tation and, more specifically, in the Similarity class. It’s unlikely that you can customize
Lucene’s scoring properties (should you need to do so) without modifying Lucene’s
source code, but you should be able to influence scoring by passing through parameters

† In the context of Enron, Raptors were financial devices used to hide losses. Enron used them to keep hundreds
of millions in debt out of the accounting books.

66 | Chapter 3: Mailboxes: Oldies but Goodies

such as “boost” via the various API parameters that couchdb-lucene exposes, as opposed
to hacking the source code.

If you’re at all familiar with the term “raptor” as it relates to the Enron story, you might
find the first few lines of the most highly ranked message in the search results helpful
as context:

The quarterly valuations for the assets hedged in the Raptor structure were valued
through the normal quarterly revaluation process. The business units, RAC and Arthur
Andersen all signed off on the initial valuations for the assets hedged in Raptor. All the
investments in Raptor were on the MPR and were monitored by the business units, and
we prepared the Raptor position report based upon this information….

If you’re swimming in a collection of thousands of messages and aren’t sure where to
start looking, that simple keyword search certainly guided you to a good starting point.
The subject of the message just quoted is “RE: Raptor Debris.” Wouldn’t it be inter-
esting to know who else was in on that discussion thread and other threads about
Raptor? Not so coincidentally, that’s the topic of the next section.

Threading Together Conversations
As a first attempt at threading conversations, you might start with some basic string
heuristics on the Subject header of the message and eventually get to the point where
you’re inspecting senders, recipients, and date stamps in an attempt to piece things
together. Fortunately, mail servers are slightly more sophisticated than you might think
and, as you know from “mbox: The Quick and Dirty on Unix Mail-
boxes” on page 42, there are Message-ID, In-Reply-To, and References headers that
can be used to extract conversations from messages in a mailbox. A message threading
algorithm commonly known as “jwz threading,”‡ takes all of this into account and
provides a reasonable approach to parsing out message threads. All of the specifics for
the algorithm can be found online at http://www.jwz.org/doc/threading.html. The im-
plementation we’ll be using is a fairly straightforward modification§ of the one found
in the Mail Trends project, which provides some other useful out-of-the-box tools.
Given that no checkins for the project hosted on Google Code have occurred since early
2008, it’s unclear whether Mail Trends is being actively maintained anywhere, but the
project nonetheless provides a useful starting point for mail analysis, as evidenced by
the salvaging of jwz threading.

Let’s go ahead and take a look at the overall workflow in Example 3-14, and then we’ll
dive into a few more of the details.

‡ The “jwz” is a reference to its author, Jamie Zawinski.

§ Namely, there were some modifications to make the code a little more object-oriented, the input/output
formats were changed to consume our JSONified message objects, and the memory profile was dramatically
decreased by considering only the few fields needed by the threading algorithm.

Threading Together Conversations | 67

Example 3-14. Creating discussion threads from mbox data via “jwz threading”
(mailboxes_threading.py)

-*- coding: utf-8 -*-

import sys
import couchdb
from mailboxes__jwzthreading import thread, Message
from mailboxes__CouchDBBulkReader import CouchDBBulkReader
from datetime import datetime as dt
from prettytable import PrettyTable

try:
 import jsonlib2 as json
except:
 import json

DB = sys.argv[1]
NUM_PROC_THREADS = 3 # Recommendation: ~1 thread/core

Pull the data as efficient as possible from CouchDB by using a thread
pool to get as close as possible to being I/O bound.
A single request to _all_docs works except that it CPU bound to a single core

now = dt.now()
print >> sys.stderr, 'Bulk reading from CouchDB...'
br = CouchDBBulkReader(DB, NUM_PROC_THREADS)
docs = br.read()
print >> sys.stderr, '\t%s' % (dt.now() - now,)

now = dt.now()
print >> sys.stderr, 'Threading in Memory...'
threads = thread([Message(doc) for doc in docs])
print >> sys.stderr, '\t%s' % (dt.now() - now,)

Write out threading info into another database.
Note that writes to CouchDB are serialized to append-only
databases, so threading is unlikely to help here, and besides,
the average document size is very small, making this a quick operation

now = dt.now()
print >> sys.stderr, 'Bulk writing to CouchDB...'
server = couchdb.Server('http://localhost:5984')
db = server.create(DB + '-threads')
results = db.update([{'thread': thread} for thread in threads],
 all_or_nothing=True)
print >> sys.stderr, '\t%s' % (dt.now() - now,)

Some basic stats

print >> sys.stderr, 'Total number of threads: %s' % len(threads)
print >> sys.stderr

Compute (_id, len(thread)) tuples
You could also compute thread length directly in CouchDB using a simple reducer

68 | Chapter 3: Mailboxes: Oldies but Goodies

function

stats = sorted(zip([result[1] for result in results], [len(t) for t in threads]),
 key=lambda x: x[1])

fields = ['Thread Id', 'Thread Length']
pt = PrettyTable(fields=fields)
[pt.set_field_align(f, 'l') for f in fields]

for stat in stats:
 pt.add_row(stat)

pt.printt()

The overall flow is that we bulk-read messages out of CouchDB, perform threading in
memory, and then write out the thread information to a separate database where each
thread is a document that contains references back to the original message’s content.
Finally, some basic statistics about the length of discussion threads are printed out.
You could just as easily use a map/reduce approach to calculating statistics about thread
length (see “Map/Reduce-Inspired Frequency Analysis” on page 55). A discussion
thread is a document that looks like Example 3-15.

Example 3-15. Sample threading results

{
 "_id": "b6d4f96224bc546acd34c405e6fff62f",
 "_rev": "1-1bf63dcdd94067ad647afe2ea3ade63c",
 "thread": [
 {
 "external_id": "24a30d62545728e26eb3311d63ae6e02",
 "subject": "FW: Sitara EOL Bridge Problem Today"
 },
 {
 "external_id": "bb808c9081912f5861295bf1d105dd02",
 "subject": "FW: Sitara EOL Bridge Problem Today"
 },
 {
 "external_id": "3b2c340c28782c8986737c35a332cd88",
 "subject": "FW: Sitara EOL Bridge Problem Today"
 }
]
 }

The most interesting parts of this listing are the references to mailboxes_jwzthreading
and CouchDBBulkReader. The API exposed by mailboxes_jwzthreading simply converts
each of the message documents fetched from CouchDB into a slightly different form
and then passes them into the threading algorithm, which takes care of the core work
and returns a convenient JSON format we can ingest back into CouchDB. The details
of mailboxes_jwzthreading are available at http://github.com/ptwobrussell/Mining-the
-Social-Web/blob/master/python_code/mailboxes__jwzthreading.py.

Threading Together Conversations | 69

The use of CouchDBBulkReader could have been omitted altogether in favor of a bulk
read through the couchdb module, but CouchDBBulkReader provides a significant per-
formance boost by using an internal thread pool to dispatch multiple requests to
CouchDB at the same time. The underlying issue is that CouchDB only uses a single
core for a single read or a single write request to the server. This might initially strike
you as odd given all of the hubbub about how Erlang—the underlying implementation
language—has such extensive support for concurrency, but it’s a design decision made
by the maintainers of the project‖ for sensible reasons. The good news is that you can
divvy out multiple requests to the server all at the same time and heat up multiple cores
fairly easily. This is the approach taken by CouchDBBulkReader, which is introduced in
Example 3-16. Briefly, an initial request is made that fetches only the ID values for every
document in the database (a relatively fast operation since the amount of data that ends
up being marshalled is very small), and then these IDs are sorted and chunked into
equal parts. Each chunk is assigned to a thread that fetches the full document for that
particular range.

As a rule of thumb, don’t use more than one processing thread per core for the thread
pool, and use performance-monitoring tools like top on a *nix system or Task Manager
on Windows to track just how much you are taxing your system. Ideally, you’d see the
beam.smp daemon process associated with CouchDB pegged at around 200% if you
were working on a machine with two cores, which effectively makes you “CPU-bound,”
but anything above 150% is still a substantial improvement. You should observe that
the bulk read consumes nearly all of the time required to retrieve the data, while the
actual threading and writing the thread documents back to CouchDB take virtually no
time at all. An interesting exercise would be to consider porting the threading algorithm
into a map/reduce paradigm used by the couchdb module, or even rewriting it in
JavaScript.

The threadpool package used in Example 3-16 is available via the usual
means: easy_install threadpool.

‖ Fundamentally, it’s unlikely that CouchDB will ever support utilizing multiple cores for a bulk write operation
because of the way writes are serialized to disk. However, it’s not hard to imagine a patch that takes advantage
of multiple cores for certain kinds of read operations, given that the underlying data structure is a tree, which
inherently lends itself to being traversed at multiple nodes.

70 | Chapter 3: Mailboxes: Oldies but Goodies

Example 3-16. Using a thread pool to maximize read throughput from CouchDB
(mailboxes__CouchDBBulkReader.py)

-*- coding: utf-8 -*-

from datetime import datetime as dt
from math import ceil
import httplib
import urllib
import time
import threadpool
try:
 import jsonlib2 as json
except:
 import json

class CouchDBBulkReader:

 def __init__(
 self,
 db,
 num_threads,
 host='localhost',
 port=5984,
):

 self.db = db
 self.num_threads = num_threads
 self.host = host
 self.port = port
 self.results = []

 id_buckets = self._getDocIds()
 self.pool = threadpool.ThreadPool(self.num_threads)
 requests = threadpool.makeRequests(self._getDocs, id_buckets,
 self._callback, self._errCallback)
 [self.pool.putRequest(req) for req in requests]
 self.pool.wait()

 def read(self):
 while True:
 try:
 time.sleep(0.5)
 self.pool.poll()
 except threadpool.NoResultsPending:
 return self.results
 except KeyboardInterrupt:
 print 'Keyboard interrupt. Exiting'
 sys.exit()
 finally:
 self.pool.joinAllDismissedWorkers()

 # Called to quickly get all of the document ids which can be sorted and dibbied out

Threading Together Conversations | 71

 def _getDocIds(self):

 # Helper function to tersely compute a list of indices that evenly distribute
 # the items in it

 def partition(alist, indices):
 return [alist[i:j] for (i, j) in zip([0] + indices, indices
 + [None])][:-1]

 try:
 conn = httplib.HTTPConnection(self.host, self.port)
 conn.request('GET', '/%s/_all_docs' % (self.db,))
 response = conn.getresponse()
 if response.status != 200: # OK
 print 'Unable to get docs: %s %s' % (response.status,
 response.reason)
 sys.exit()

 ids = [i['id'] for i in json.loads(response.read())['rows']
 if not i['id'].startswith('_')]
 ids.sort()
 finally:
 conn.close()

 partition_size = int(ceil(1.0 * len(ids) / self.num_threads))
 indices = []

 _len = len(ids)
 idx = 0
 while idx < _len:
 idx += partition_size
 indices.append(idx)

 return partition(ids, indices)

 def _getDocs(self, ids):
 try:
 (startkey, endkey) = (ids[0], ids[-1])
 conn = httplib.HTTPConnection(self.host, self.port)
 conn.request('GET',
 '/%s/_all_docs?startkey="%s"&endkey="%s"&include_docs=true'
 % (self.db, startkey, endkey))
 response = conn.getresponse()
 if response.status != 200: # OK
 print 'Unable to get docs: %s %s' % (response.status,
 response.reason)
 sys.exit()
 return response.read()
 finally:
 conn.close()

 def _errCallback(self, request, result):
 print 'An Error occurred:', request, result
 sys.exit()

72 | Chapter 3: Mailboxes: Oldies but Goodies

 def _callback(self, request, result):
 rows = json.loads(result)['rows']
 self.results.extend([row['doc'] for row in rows])

With tools in hand to compute discussion threads, let’s now turn back to the Enron
data.

Look Who’s Talking
Running the code in Example 3-14 creates a database that provides rapid access to
message ID values grouped as discussion threads. With a database already containing
the original messages themselves and another Lucene-backed database containing key-
word search capabilities, you can really begin to do some very interesting things. Let’s
now revisit Raptor from the previous section by considering the task of computing the
individual sets of email addresses associated by any discussion thread where Raptor
was mentioned, or, to put it another way, the various sets of people involved in dis-
cussions using this term. The resulting data structure we want to get to would look
something like what’s shown in Example 3-17.

Example 3-17. Ideal results from threading together discussions

{
 "participants : [person-1@example.com,
 person-2@example.com,
 ...
],
 "message_ids" : ["id1",
 "id2",
 ...
],
 "subject" : "subject"
 }

The approach we’ll take involves the following three steps:

• Query couchdb-lucene for message IDs associated with a term of interest such as
Raptor.

• Look up discussion threads associated with any of those message IDs.

• Compute the unique set of email addresses that appear in any of the header fields
associated with messages in any of the threads.

Example 3-18 recycles some previous code and demonstrates one possible implemen-
tation that ties it all together.

Threading Together Conversations | 73

Example 3-18. A robust approach for threading together discussion threads from mbox data
(mailboxes__participants_in_conversations.py)

-*- coding: utf-8 -*-

import sys
import httplib
from urllib import quote
from urllib import urlencode
import json

DB = sys.argv[1] # enron
QUERY = sys.argv[2]

Query couchdb-lucene by_subject and by_content

message_ids_of_interest = []
for idx in ['by_subject', 'by_content']:

 try:
 conn = httplib.HTTPConnection('localhost', 5984)
 conn.request('GET', '/%s/_fti/_design/lucene/%s?q=%s&limit=50000' % (DB,
 idx, quote(QUERY)))
 response = conn.getresponse()
 if response.status == 200:
 response_body = json.loads(response.read())
 message_ids_of_interest.extend([row['id'] for row in
 response_body['rows']])
 else:
 print 'An error occurred fetching the response: %s %s' \
 % (response.status, response.reason)
 sys.exit()
 finally:
 conn.close()

Remove any duplicates

message_ids_of_interest = list(set(message_ids_of_interest))

Perform discussion thread filtering in memory. It's a relatively
small amount of data

try:
 conn = httplib.HTTPConnection('localhost', 5984)
 conn.request('GET', '/%s/_all_docs?include_docs=true' % (DB + '-threads',))
 response = conn.getresponse()
 if response.status != 200: # OK
 print 'Unable to get docs: %s %s' % (response.status, response.reason)
 sys.exit()

 threads = [dict([('thread_id', row['doc']['_id']), ('message_ids',
 [t['external_id'] for t in row['doc']['thread']])]) for row in
 json.loads(response.read())['rows']]
finally:
 conn.close()

74 | Chapter 3: Mailboxes: Oldies but Goodies

Find only the threads that have a message_id appearing in the list of message ids
fetched from the Lucene index

threads_of_interest = [t for t in threads for message_id in t['message_ids']
 if message_id in message_ids_of_interest]

Remove duplicates

seen = []
idx = 0
while idx < len(threads_of_interest):
 if threads_of_interest[idx]['thread_id'] in seen:
 threads_of_interest.pop(idx)
 else:
 seen.append(threads_of_interest[idx]['thread_id'])
 idx += 1

Cull out message ids for threads of interest

message_ids_for_threads_of_interest = [t['message_ids'] for t in
 threads_of_interest]

Flatten out the list of lists into just a list and remove duplicates

message_ids_for_threads_of_interest = list(set([message_id for message_ids in
 message_ids_for_threads_of_interest for message_id in message_ids]))

Query CouchDB for the email addresses in various headers of interest using a bulk
request

try:
 conn = httplib.HTTPConnection('localhost', 5984)
 post_params = json.dumps({'keys': message_ids_for_threads_of_interest})
 conn.request('POST', '/%s/_all_docs?include_docs=true' % (DB,), post_params)
 response = conn.getresponse()
 if response.status != 200: # OK
 print 'Unable to get docs: %s %s' % (response.status, response.reason)
 sys.exit()

 full_docs = [row['doc'] for row in json.loads(response.read())['rows']]
finally:
 conn.close()

Finally, with full messages of interest on hand, parse out headers of interest and
and compute unique sets of email addresses for each thread by decorating
threads_of_interest

for thread in threads_of_interest:
 participants = []
 for message_id in thread['message_ids']:
 doc = [d for d in full_docs if d['_id'] == message_id][0]

 try:
 participants.append(doc.get('From'))

Threading Together Conversations | 75

 participants.extend(doc.get('To'))
 if doc.get('Cc'):
 participants.extend(doc.get('Cc'))
 if doc.get('Bcc'):
 participants.extend(doc.get('Bcc'))
 except:
 pass # Maybe a X-To header, etc. as opposed to To?

 thread['participants'] = list(set(participants))
 thread['subject'] = doc['Subject']
print json.dumps(threads_of_interest, indent=4)

Sample output from the script is shown in Example 3-19.

Example 3-19. Sample results from threading discussions for a search query of “Raptor”

[
 {
 "thread_id": "b6d4f96224bc546acd34c405e6c471c5",
 "participants": [
 "j.kaminski@enron.com",
 "rakesh.bharati@enron.com"
],
 "message_ids": [
 "24a30d62545728e26eb3311d63effb47"
],
 "subject": "FW: Note on Valuation"
 },
 {
 "thread_id": "b6d4f96224bc546acd34c405e6dbc0d4",
 "participants": [
 "mary.fischer@enron.com",
 "danny.wilson@enron.com",
 "a..lee@enron.com",
 "john.swafford@enron.com",
 "facundo.caminos@enron.com"
],
 "message_ids": [
 "24a30d62545728e26eb3311d633cf6b3"
],
 "subject": "Tax Accruals on the Raptor Companies"
 },
 {
 "thread_id": "b6d4f96224bc546acd34c405e6eb7adf",
 "participants": [
 "mark.ruane@enron.com",
 "rick.buy@enron.com"
],
 "message_ids": [
 "3b2c340c28782c8986737c35a357c6ae"
],
 "subject": "FW: E-11 Raptor"
 },

 ... output truncated ...

76 | Chapter 3: Mailboxes: Oldies but Goodies

]

In short, the script has provided some tools for determining who participated in what
conversations based on a keyword heuristic. You could load an mbox file into a decent
mail client and search out this information via a manual process, but the demonstrated
approach is generally useful and could be adapted for many automated or semiauto-
mated analyses.

Visualizing Mail “Events” with SIMILE Timeline
There are numerous ways to visualize mail data. You could bucket messages by time
and present the data as a bar chart to inspect the time of day that the most mail trans-
actions are happening, create a graph of connections among senders and recipients and
filter by the discussion thread, load query results onto a time line, or use any number
of other techniques. This section demonstrates out-of-the-box usage of the SIMILE
Timeline, an easy to use (yet extremely powerful) tool for visualizing event-centric data.
The SIMILE Timeline is particularly useful for exploring mail data because it allows us
to view the transmission of each individual message as a unique event while also visu-
alizing the larger discussion thread as an extended event that transpires over a longer
period of time. We can also easily specify a link for each individual message so that
when we click on a message in Timeline, it brings up the full text of the message in
Futon.

We’ll stick to pragmatic analysis approaches and avoid building a full-blown web app
to visualize the mail data, but given very little additional effort, it wouldn’t be difficult
to construct something more robust. We’ll opt to simply modify the output format
from Example 3-18 so that it emits JSON that’s compatible with the Timeline. From
there, all that’s required is pointing a simple web page to the SIMILE Event Source
JSON output on your local filesystem to load up the Timeline. Sample target output is
shown in Example 3-20.

Example 3-20. The data format expected by the SIMILE Timeline
(mailboxes__participants_in_conversations_adapted_for_simile.py)

{
 "dateTimeFormat": "iso8601",
 "events": [
 {
 "start": "2002-02-06T08:20:49-08:00",
 "description": "Message involving sarah.palmer@enron.com",
 "link": "http://localhost:5984/_utils/document.html?enron/bb...",
 "durationEvent": false,
 "title": "Enron Mentions -- 02/06/02"
 },
 {
 "start": "2001-05-22T16:20:25-07:00",
 "description": "Message involving j.kaminski@enron.com, ...",

Visualizing Mail “Events” with SIMILE Timeline | 77

 "link": "http://localhost:5984/_utils/document.html?enron/24a...",
 "durationEvent": false,
 "title": "RE: Pricing of restriction on Enron stock"
 },
 ...
]
}

Example 3-21 demonstrates a basic augmentation to Example 3-18 that’s necessary to
produce output that can be consumed by the SIMILE Timeline (shown in Figure 3-6).
It creates an event for each individual message in addition to an event for each discus-
sion thread.

Example 3-21. Augmented output from Example 3-18 that emits output that can be consumed by the
SIMILE Timeline

Finally, with full messages of interest on hand, parse out headers of interest
and compute output for SIMILE Timeline

events = []
for thread in threads_of_interest:

 # Process each thread: create an event object for the thread as well as
 # for individual messages involved in the thread

 participants = []
 message_dates = []
 for message_id in thread['message_ids']:
 doc = [d for d in full_docs if d['_id'] == message_id][0]
 message_dates.append(parse(doc['Date']).isoformat())
 try:
 participants.append(doc.get('From'))
 participants.extend(doc.get('To'))
 if doc.get('Cc'):
 participants.extend(doc.get('Cc'))
 if doc.get('Bcc'):
 participants.extend(doc.get('Bcc'))
 except:
 pass # Maybe a X-To or X-Origin header, etc. as opposed to To?

 # Append each individual message in the thread

 event = {}
 event['title'] = doc['Subject']
 event['start'] = parse(doc['Date']).isoformat()
 event['durationEvent'] = False
 event['description'] = 'Message involving ' \
 + ', '.join(list(set(participants)))
 event['link'] = 'http://localhost:5984/_utils/document.html?%s/%s' % (DB,
 doc['_id'])
 events.append(event)

 # Find start and end dates for the messages involved in the thread

 if len(thread['message_ids']) > 1:

78 | Chapter 3: Mailboxes: Oldies but Goodies

 event = {}
 event['title'] = doc['Subject']
 message_dates.sort()
 event['start'] = parse(message_dates[0]).isoformat()
 event['end'] = parse(message_dates[-1]).isoformat()
 event['durationEvent'] = True
 event['description'] = str(len(thread['message_ids'])) \
 + ' messages in thread'
 events.append(event) # append the thread event

if not os.path.isdir('out'):
 os.mkdir('out')

f = open(os.path.join('out', 'simile_data.json'), 'w')
f.write(json.dumps({'dateTimeFormat': 'iso8601', 'events': events}, indent=4))
f.close()

print >> sys.stderr, 'Data file written to: %s' % f.name

Point SIMILE to the data file

There are lots of online demonstrations of Timeline, along with ample documentation.
This simple example of plotting mail on Timeline just shows the bare minimum to get
you up and running; it’s just the beginning of what’s possible. The “Getting Started
with Timeline” tutorial is a great way to begin. Assuming you have the data to back the
queries it requests, the mailboxes__participants_in_conversations_adapted_for_sim
ile.py script is turn-key in that it parses the data, dumps it into an HTML template,
and automatically opens it in your web browser. Enjoy!

Figure 3-6. Sample results from a query for “Raptor” visualized with SIMILE Timeline: you can scroll
“infinitely” in both directions

Visualizing Mail “Events” with SIMILE Timeline | 79

Analyzing Your Own Mail Data
The Enron mail data makes for great illustrations in a chapter on mail analysis, but
you’ll almost certainly want to take a closer look at your own mail data. Fortunately,
many popular mail clients provide an “export to mbox” option, which makes it pretty
simple to get your mail data into a format that lends itself to analysis by the techniques
described in this chapter. For example, in Apple Mail, you can select some number of
messages, pick “Save As…” from the File menu, and then choose “Raw Message Source”
as the formatting option to export the messages as an mbox file (see Figure 3-7). A little
bit of searching should turn up results for how to do this in most other major clients.

Figure 3-7. Most mail clients provide an option for exporting your mail data to an mbox archive

If you exclusively use an online mail client, you could opt to pull your data down into
a mail client and export it, but you might prefer to fully automate the creation of an
mbox file by pulling the data directly from the server. Just about any online mail service
will support POP3 (Post Office Protocol version 3), most also support IMAP (Internet
Message Access Protocol), and Python scripts for pulling down your mail aren’t very
hard to whip up. One particularly robust command-line tool that you can use to pull
mail data from just about anywhere is getmail, which turns out to be written in Python.
Two modules included in Python’s standard library, poplib and imaplib, provide a
terrific foundation, so you’re also likely to run across lots of useful scripts if you do a
bit of searching online. getmail is particularly easy to get up and running. To slurp
down your Gmail inbox data, for example, you just download and install it, then set
up a getmailrc file with a few basic options. Example 3-22 demonstrates some settings
for a *nix environment. Windows users would need to change the [destination]
path and [options] message_log values to valid paths.

80 | Chapter 3: Mailboxes: Oldies but Goodies

Example 3-22. Sample getmail settings for a *nix environment

[retriever]
type = SimpleIMAPSSLRetriever
server = imap.gmail.com
username = ptwobrussell
password = blarty-blar-blar

[destination]
type = Mboxrd
path = /tmp/gmail.mbox

[options]
verbose = 2
message_log = ~/.getmail/gmail.log

With a configuration in place, simply invoking getmail from a terminal does the rest.
Once you have a local mbox on hand, you can analyze it using the techniques you’ve
learned in this chapter:

$ getmail
getmail version 4.20.0
Copyright (C) 1998-2009 Charles Cazabon. Licensed under the GNU GPL version 2.
SimpleIMAPSSLRetriever:ptwobrussell@imap.gmail.com:993:
 msg 1/10972 (4227 bytes) from ... delivered to Mboxrd /tmp/gmail.mbox
 msg 2/10972 (3219 bytes) from ... delivered to Mboxrd /tmp/gmail.mbox
 ...

“Tapping into Your Gmail” on page 231 investigates using imaplib to slurp down your
Gmail data and analyze it, as one part of the exercises in Chapter 7, which focuses on
Google technologies.

The Graph Your (Gmail) Inbox Chrome Extension
There are several useful toolkits floating around that analyze webmail, and one of the
most promising to emerge recently is the Graph Your Inbox Chrome Extension. To use
this extension, you just install it, authorize it to access your mail data, run some Gmail
queries, and let it take care of the rest. You can search for keywords like “pizza,” time
values such as “2010,” or run more advanced queries such as “from:matthew@exam-
ple.org” and “label:Strata”. It’s highly likely that this extension is only going to keep
getting better, given that it’s new and has been so well received thus far. Figure 3-8
shows a sample screenshot.

“Tapping into Your Gmail” on page 231 provides an overview of how to use Python’s
smtplib module to tap into your Gmail account (or any other mail account that speaks
SMTP) and mine the textual information in messages. Be sure to check it out when
you’re interested in moving beyond mail header information and ready to dig into text
mining.

Analyzing Your Own Mail Data | 81

Closing Remarks
We’ve covered a lot of ground in this chapter, but we’ve just barely begun to scratch
the surface of what’s possible with mail data. Our focus has been on mboxes, a simple
and convenient file format that lends itself to high portability and easy analysis by many
Python tools and packages. There’s an incredible amount of open source technology
available for mining mboxes, and Python is a terrific language for slicing and dicing
them. A small investment in these tools and stores such as CouchDB, which lends itself
to easily sharing your data, can go a long way.

Figure 3-8. The Graph Your Inbox Chrome Extension provides a concise summary of your Gmail
activity

82 | Chapter 3: Mailboxes: Oldies but Goodies

CHAPTER 4

Twitter: Friends, Followers, and
Setwise Operations

Unless you’ve been cryogenically frozen for the past couple of years, you’ve no doubt
heard of Twitter—a microblogging service that can be used to broadcast short (maxi-
mum 140 characters) status updates. Whether you love it, hate it, or are indifferent,
it’s undeniable that Twitter has reshaped the way people communicate on the Web.
This chapter makes a modest attempt to introduce some rudimentary analytic functions
that you can implement by taking advantage of the Twitter APIs to answer a number
of interesting questions, such as:

• How many friends/followers do I have?

• Who am I following that is not following me back?

• Who is following me that I am not following back?

• Who are the friendliest and least friendly people in my network?

• Who are my “mutual friends” (people I’m following that are also following me)?

• Given all of my followers and all of their followers, what is my potential influence
if I get retweeted?

Twitter’s API is constantly evolving. It is highly recommended that you
follow the Twitter API account, @TwitterAPI, and check any differen-
ces between the text and actual behavior you are seeing against the
official docs.

83

This chapter analyzes relationships among Twitterers, while the next chapter hones
in on the actual content of tweets. The code we’ll develop for this chapter is relatively
robust in that it takes into consideration common issues such as the infamous
Twitter rate limits,* network I/O errors, potentially managing large volumes of data,
etc. The final result is a fairly powerful command-line utility that you should be able
to adapt easily for your own custom uses (http://github.com/ptwobrussell/Mining-the
-Social-Web/blob/master/python_code/TwitterSocialGraphUtility.py).

Having the tools on hand to harvest and mine your own tweets is es-
sential. However, be advised that initiatives to archive historical Twitter
data in the U.S. Library of Congress may soon render the inconveniences
and headaches associated with harvesting and API rate-limiting non-
issues for many forms of analysis. Firms such as Infochimps are also
emerging and providing a medium for acquiring various kinds of Twitter
data (among other things). A query for Twitter data at Infochimps turns
up everything from archives for #worldcup tweets to analyses of how
smileys are used.

RESTful and OAuth-Cladded APIs
The year 2010 will be remembered by some as the transition period in which Twitter
started to become “all grown up.” Basic HTTP authentication got replaced with
OAuth† (more on this shortly), documentation improved, and API statuses became
transparent, among other things. Twitter search APIs that were introduced with Twit-
ter’s acquisition of Summize collapsed into the “traditional” REST API, while the
streaming APIs gained increasing use for production situations. If Twitter were on the
wine menu, you might pick up the 2010 bottle and say, “it was a good year—a very
good year.” All that said, there’s a lot of useful information tucked away online, and
this chapter aims not to reproduce any more of it than is absolutely necessary.

Most of the development in this chapter revolves around the social graph APIs for
getting the friends and followers of a user, the API for getting extended user information
(name, location, last tweet, etc.) for a list of users, and the API for getting tweet data.
An entire book of its own (literally) could be written to explore additional possibilities,
but once you’ve learned the ropes, your imagination will have no problems taking over.
Plus, certain exercises always have to be left for the “interested reader,” right?

The Python client we’ll use for Twitter is quite simply named twitter (the same one
we’ve already seen at work in Chapter 1). It provides a minimal wrapper around Twit-

* At the time of this writing, Twitter limits OAuth requests to 350 per hour and anonymous requests to 150
per hour. Twitter believes that these limits should be sufficient for most every client application, and that if
they’re not, you’re probably building your app wrong.

† As of December 2010, Twitter implements OAuth 1.0a, but you should expect to see support for OAuth 2.0
sometime in 2011.

84 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

ter’s RESTful web services. There’s very little documentation about this module be-
cause you simply construct requests in the same manner that the URL is pieced together
in Twitter’s online documentation. For example, a request from the terminal that re-
trieves Tim O’Reilly’s user info simply involves dispatching a request to the /users/
show resource as a curl command, as follows:

$ curl 'http://api.twitter.com/1/users/show.json?screen_name=timoreilly'

curl is a handy tool that can be used to transfer data to/from a server
using a variety of protocols, and it is especially useful for making HTTP
requests from a terminal. It comes standard and is usually in the PATH
on most *nix systems, but Windows users may need to download and
configure it.

There are a couple of subtleties about this request. First, Twitter has a versioned API,
so the appearance of /1 as the URL context denotes that Version 1 of the API is in use.
Next, a user_id could have been passed in instead of a screen_name had one been avail-
able. The mapping of the curl command to the equivalent Python script in Exam-
ple 4-1 should be obvious.

Example 4-1. Fetching extended information about a Twitter user

-*- coding: utf-8 -*-

import twitter
import json

screen_name = 'timoreilly'
t = twitter.Twitter(domain='api.twitter.com', api_version='1')
response = t.users.show(screen_name=screen_name)
print json.dumps(response, sort_keys=True, indent=4)

In case you haven’t reviewed Twitter’s online docs yet, it’s probably worthwhile to
explicitly mention that the /users/show API call does not require authentication, and
it has some specific peculiarities depending on whether a user has “protected” his tweets
in the privacy settings. The /users/lookup API call is very similar to /users/show except
that it requires authentication and allows you to pass in a comma-separated list of
screen_name or user_id values so that you can perform batch lookups. To obtain au-
thorization to use Twitter’s API, you’ll need to learn about OAuth, which is the topic
of the next section.

No, You Can’t Have My Password
OAuth stands for “open authorization.” In an effort to be as forward-looking as
possible, this section provides a very cursory overview of OAuth 2.0, an emerging au-
thorization scheme that Facebook has already implemented from a clean slate (see
Chapter 9) and that Twitter plans to support “soon”. It will eventually become the new

RESTful and OAuth-Cladded APIs | 85

industry standard. As this book was written, Twitter and many other web services
support OAuth 1.0a, as defined by RFC 5849. However, the landscape is expected to
shift, with OAuth 2.0 streamlining work for developers and promoting better user ex-
periences. While the terminology and details of this section are specific to OAuth 2.0,
the basic workflow involved in OAuth 1.0a is very similar. Both schemes are “three-
legged” in that they involve an exchange of information (often called a “dance”) among
a client application that needs access to a protected resource, a resource owner such as
a social network, and an end user who needs to authorize the client application to access
the protected resource (without giving it a username/password combination).

It is purely coincidence that Twitter’s current (and only) API Version is
1.0 and that Twitter currently supports OAuth 1.0a. It is likely that
Version 1 of Twitter’s API will eventually also support OAuth 2.0 when
it is ready.

So, in a nutshell, OAuth provides a way for you to authorize an application to access
data you have stored away in another application without having to share your user-
name and password. The IETF OAuth 2.0 Protocol spec isn’t nearly as scary as it might
sound, and you should take a little time to peruse it because OAuth is popping up
everywhere—especially in the social network landscape. Here’s the gist of the major
steps involved:

• You (the end user) want to authorize an application of some sort (the client) to
access some of your data (a scope) that’s managed by a web service (the resource
owner).

— You’re smart and you know better than to give the app your credentials directly.

• Instead of asking for your password, the client redirects you to the resource owner,
and you authorize a scope for the client directly with the resource owner.

— The client identifies itself with a unique client identifier and a way to contact it
once authorization has taken place by the end user.

• Assuming the end user authorizes the client, the client is notified and given an
authorization code confirming that the end user has authorized it to access a scope.

— But there’s a small problem if we stop here: given that the client has identified
itself with an identifier that is necessarily not a secret, a malicious client could
have fraudulently identified itself and masqueraded as being created by a trusted
publisher, effectively deceiving the end user to authorize it.

• The client presents the authorization code it just received along with its client
identifier and corresponding client secret to the resource owner and gets back an
access token. The combination of client identifier, client secret, and authorization
code ensures that the resource owner can positively identify the client and its
authorization.

86 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

— The access token may optionally be short-lived and need to be refreshed by the
client.

• The client uses the access token to make requests on behalf of the end user until
the access token is revoked or expires.

Section 1.4.1 of the spec provides more details and the basis for Figure 4-1.

Figure 4-1. The web server flow for OAuth 2.0. Start with the web client and follow the arrows in
lexographic order so that you end back at the web client after completing steps A–E.

Again, OAuth 2.0 is a relatively new beast, and as of late 2010, various details are still
being hammered out before the spec is officially published as an RFC. Your best bet
for really understanding it is to sweat through reading the spec, sketching out some
flows, asking yourself questions, role playing as the malicious user, etc. To get a feel
for some of the politics associated with OAuth, review the Ars Technica article by Ryan
Paul, “Twitter: A Case Study on How to Do OAuth Wrong”. Also check out Eran
Hammer-Lahav’s (the first author on the OAuth 2.0 Protocol working draft) re-
sponse, along with the fairly detailed rebuttal by Ben Adida, a cryptography expert.

As a late-breaking convenience for situations that involve what Twitter
calls a “single-user use case”, Twitter also offers a streamlined fast track
for getting the credentials you need to make requests without having to
implement the entire OAuth flow. Read more about it at http://dev.twit
ter.com/pages/oauth_single_token. This chapter and the following chap-
ter, however, are written with the assumption that you’ll want to im-
plement the standard OAuth flow.

RESTful and OAuth-Cladded APIs | 87

A Lean, Mean Data-Collecting Machine
In principle, fetching Twitter data is dirt simple: make a request, store the response,
and repeat as needed. But all sorts of real-world stuff gets in the way, such as network
I/O, the infamous fail whale,‡ and those pesky API rate limits. Fortunately, it’s not too
difficult to handle such issues, so long as you do a bit of forward planning and anticipate
the things that could (and will) go wrong.

When executing a long-running program that’s eating away at your rate limit, writing
robust code is especially important; you want to handle any exceptional conditions
that could occur, do your best to remedy the situation, and—in the event that your
best just isn’t good enough—save state and leave an indication of how to pick things
back up where they left off. In other words, when you write data-harvesting code for a
platform like Twitter, you must assume that it will throw curve balls at you. There
will be atypical conditions you’ll have to handle, and they’re often more the norm than
the exception.

The code we’ll develop is semi-rugged in that it deals with the most common things
that can go wrong and is patterned so that you can easily extend it to handle new
circumstances if and when they arise. That said, there are two specific HTTP errors
that you are highly likely to encounter when harvesting even modest amounts of Twitter
data: a 401 Error (Not Authorized) and a 503 Error (Over Capacity). The former occurs
when you attempt to access data that a user has protected, while the latter is basically
unpredictable.

Whenever Twitter returns an HTTP error, the twitter module throws a
TwitterHTTPError exception, which can be handled like any other Python exception,
with a try/except block. Example 4-2 illustrates a minimal code block that harvests
some friend IDs and handles some of the more common exceptional conditions.

You’ll need to create a Twitter app in order to get a consumer key and
secret that can be used with the Twitter examples in this book. It’s
painless and only takes a moment.

Example 4-2. Using OAuth to authenticate and grab some friend data
(friends_followers__get_friends.py)

-*- coding: utf-8 -*-

import sys
import time
import cPickle
import twitter

‡ Whenever Twitter goes over capacity, an HTTP 503 error is issued. In a browser, the error page displays an
image of the now infamous “fail whale.” See http://twitter.com/503.

88 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

from twitter.oauth_dance import oauth_dance

Go to http://twitter.com/apps/new to create an app and get these items

consumer_key = ''
consumer_secret = ''

SCREEN_NAME = sys.argv[1]
friends_limit = 10000

(oauth_token, oauth_token_secret) = oauth_dance('MiningTheSocialWeb',
 consumer_key, consumer_secret)
t = twitter.Twitter(domain='api.twitter.com', api_version='1',
 auth=twitter.oauth.OAuth(oauth_token, oauth_token_secret,
 consumer_key, consumer_secret))

ids = []
wait_period = 2 # secs
cursor = -1

while cursor != 0:
 if wait_period > 3600: # 1 hour
 print 'Too many retries. Saving partial data to disk and exiting'
 f = file('%s.friend_ids' % str(cursor), 'wb')
 cPickle.dump(ids, f)
 f.close()
 exit()

 try:
 response = t.friends.ids(screen_name=SCREEN_NAME, cursor=cursor)
 ids.extend(response['ids'])
 wait_period = 2
 except twitter.api.TwitterHTTPError, e:
 if e.e.code == 401:
 print 'Encountered 401 Error (Not Authorized)'
 print 'User %s is protecting their tweets' % (SCREEN_NAME,)
 elif e.e.code in (502, 503):
 print 'Encountered %i Error. Trying again in %i seconds' % (e.e.code,
 wait_period)
 time.sleep(wait_period)
 wait_period *= 1.5
 continue
 elif t.account.rate_limit_status()['remaining_hits'] == 0:
 status = t.account.rate_limit_status()
 now = time.time() # UTC
 when_rate_limit_resets = status['reset_time_in_seconds'] # UTC
 sleep_time = when_rate_limit_resets - now
 print 'Rate limit reached. Trying again in %i seconds' % (sleep_time,
)
 time.sleep(sleep_time)
 continue

 cursor = response['next_cursor']
 print 'Fetched %i ids for %s' % (len(ids), SCREEN_NAME)
 if len(ids) >= friends_limit:

A Lean, Mean Data-Collecting Machine | 89

 break

do something interesting with the IDs

print ids

The twitter.oauth module provides read_token_file and write_token_file conven-
ience functions that can be used to store and retrieve your OAuth token and OAuth
token secret, so you don’t have to manually enter in a PIN to authenticate each time.

In OAuth 2.0 parlance, “client” describes the same role as a “consumer”
in OAuth 1.0, thus the use of the variable names consumer_key and
consumer_secret in the preceding listing.

There are several noteworthy items about the listing:

• You can obtain your own consumer_key and consumer_secret by registering an ap-
plication with Twitter at http://dev.twitter.com/apps/new. These two items, along
with the credentials returned through the “OAuth dance,” are what enable you to
provide an application with access to your account data (your friends list, in this
particular example).

• The online documentation for Twitter’s social graph APIs states that requests for
friend/follower data will return up to 5,000 IDs per call. In the event that there are
more than 5,000 IDs to be returned, a cursor value that’s not equal to zero is
returned that can be used to navigate forward to the next batch. This particular
example “stops short” at a maximum of 10,000 ID values, but friends_limit could
be an arbitrarily larger number.

• Given that the /friends/ids resource returns up to 5,000 IDs at a time, regular user
accounts could retrieve up to 1,750,000 IDs before rate limiting would kick in
based on a 350 requests/hour metric. While it might be an anomaly for a user to
have that many friends on Twitter, it’s not at all uncommon for popular users to
have many times that many followers.

90 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

• It’s not clear from any official documentation or the example code itself, but ID
values in the results seem to be in reverse chronological order, so the first value
will be the person you most recently followed, and the last value will be the first
person you followed. Requests for followers via t.followers.ids appear to return
results in the same order.

At this point, you’ve only been introduced to a few Twitter APIs. These are sufficiently
powerful to answer a number of interesting questions about your account or any other
nonprotected account, but there are numerous other APIs out there. We’ll look at some
more of them shortly, but first, let’s segue into a brief interlude to refactor Example 4-2.

A Very Brief Refactor Interlude
Given that virtually all interesting code listings involving Twitter data will repeatedly
involve performing the OAuth dance and making robust requests that can stand up to
the litany of things that you have to assume might go wrong, it’s very worthwhile to
establish a pattern for performing these tasks. The approach that we’ll take is to isolate
the OAuth logic for login() and makeTwitterRequest functions so that Example 4-2
looks like the following refactored version of Example 4-3:

Example 4-3. Example 4-2 refactored to use two common utilities for OAuth and making API requests
(friends_followers__get_friends_refactored.py)

-*- coding: utf-8 -*-

import sys
import time
import cPickle
import twitter
from twitter__login import login
from twitter__util import makeTwitterRequest

friends_limit = 10000

You may need to setup your OAuth settings in twitter__login.py
t = login()

def getFriendIds(screen_name=None, user_id=None, friends_limit=10000):
 assert screen_name is not None or user_id is not None

 ids = []
 cursor = -1
 while cursor != 0:
 params = dict(cursor=cursor)
 if screen_name is not None:
 params['screen_name'] = screen_name
 else:
 params['user_id'] = user_id

 response = makeTwitterRequest(t, t.friends.ids, **params)

A Lean, Mean Data-Collecting Machine | 91

 ids.extend(response['ids'])
 cursor = response['next_cursor']
 print >> sys.stderr, \
 'Fetched %i ids for %s' % (len(ids), screen_name or user_id)
 if len(ids) >= friends_limit:
 break

 return ids

if __name__ == '__main__':
 ids = getFriendIds(sys.argv[1], friends_limit=10000)

 # do something interesting with the ids

 print ids

From here on out, we’ll continue to use twitter__login and twitter__util to keep the
examples as crisp and simple as possible. It’s worthwhile to take a moment and peruse
the source for these modules online before reading further. They’ll appear again and
again, and twitter__util will soon come to have a number of commonly used con-
venience functions in it.

The next section introduces Redis, a powerful data structures server that has quickly
gained a fierce following due to its performance and simplicity.

Redis: A Data Structures Server
As we’ve already observed, planning ahead is important when you want to execute a
potentially long-running program to scarf down data from the Web, because lots of
things can go wrong. But what do you do with all of that data once you get it? You may
initially be tempted to just store it to disk. In the situation we’ve just been looking at,
that might result in a directory structure similar to the following:

./
screen_name1/
 friend_ids.json
 follower_ids.json
 user_info.json
screen_name2/
 ...
...

This looks pretty reasonable until you harvest all of the friends/followers for a very
popular user—then, depending on your platform, you may be faced with a directory
containing millions of subdirectories that’s relatively unusable because you can’t
browse it very easily (if at all) in a terminal. Saving all this info to disk might also require
that you maintain a registry of some sort that keeps track of all screen names, because
the time required to generate a directory listing (in the event that you need one) for
millions of files might not yield a desirable performance profile. If the app that uses the
data then becomes threaded, you may end up with multiple writers needing to access

92 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

the same file at the same time, so you’ll have to start dealing with file locking and such
things. That’s probably not a place you want to go. All we really need in this case is a
system that makes it trivially easy to store basic key/value pairs and a simple key en-
coding scheme—something like a disk-backed dictionary would be a good start. This
next snippet demonstrates the construction of a key by concatenating a user ID, de-
limiter, and data structure name:

s = {}
s["screen_name1$friend_ids"] = [1,2,3, ...]
s["screen_name1$friend_ids"] # returns [1,2,3, ...]

But wouldn’t it be cool if the map could automatically compute set operations so that
we could just tell it to do something like:

s.intersection("screen_name1$friend_ids", "screen_name1$follower_ids")

to automatically compute “mutual friends” for a Twitterer (i.e., to figure out which of
their friends are following them back)? Well, there’s an open source project called
Redis that provides exactly that kind of capability. Redis is trivial to install, blazingly
fast (written in C), scales well, is actively maintained, and has a great Python client with
accompanying documentation available. Taking Redis for a test drive is as simple as
installing it and starting up the server. (Windows users can save themselves some
headaches by grabbing a binary that’s maintained by servicestack.net.) Then, just run
easy_install redis to obtain a nice Python client that provides trivial access to every-
thing it has to offer. For example, the previous snippet translates to the following Redis
code:

import redis

r = redis.Redis(host='localhost', port=6379, db=0) # Default params
[r.sadd("screen_name1$friend_ids", i) for i in [1, 2, 3, ...]]
r.smembers("screen_name1$friend_ids") # Returns [1, 2, 3, ...]

Note that while sadd and smembers are set-based operations, Redis includes operations
specific to various other types of data structures, such as sets, lists, and hashes. The set
operations turn out to be of particular interest because they provide the answers to
many of the questions posed at the beginning of this chapter. It’s worthwhile to take a
moment to review the documentation for the Redis Python client to get a better ap-
preciation of all it can do. Recall that you can simply execute a command like pydoc
redis.Redis to quickly browse documentation from a terminal.

See “Redis: under the hood” for an awesome technical deep dive into
how Redis works internally.

A Lean, Mean Data-Collecting Machine | 93

Elementary Set Operations
The most common set operations you’ll likely encounter are the union, intersection,
and difference operations. Recall that the difference between a set and a list is that a
set is unordered and contains only unique members, while a list is ordered and may
contain duplicate members. As of Version 2.6, Python provides built-in support for sets
via the set data structure. Table 4-1 illustrates some examples of common set opera-
tions for a trivially small universe of discourse involving friends and followers:

Friends = {Abe, Bob}, Followers = {Bob, Carol}

Table 4-1. Sample set operations for Friends and Followers

Operation Result Comment

Friends ∪ Followers Abe, Bob, Carol Someone’s overall network

Friends ∩ Followers Bob Someone’s mutual friends

Friends – Followers Abe People a person is following, but who are not following that person
back

Followers – Friends Carol People who are following someone but are not being followed back

As previously mentioned, Redis provides native operations for computing common set
operations. A few of the most relevant ones for the upcoming work at hand include:

smembers
Returns all of the members of a set

scard
Returns the cardinality of a set (the number of members in the set)

sinter
Computes the intersection for a list of sets

sdiff
Computes the difference for a list of sets

mget
Returns a list of string values for a list of keys

mset
Stores a list of string values against a list of keys

sadd
Adds an item to a set (and creates the set if it doesn’t already exist)

keys
Returns a list of keys matching a regex-like pattern

Skimming the pydoc for Python’s built-in set data type should convince you of the close
mapping between it and the Redis APIs.

94 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

We’re Gonna Analyze Like It’s 1874
Although the concepts involved in set theory are as old as time itself, it is Georg Cantor
who is generally credited with inventing set theory. His paper, “On a Characteristic
Property of All Real Algebraic Numbers,” written in 1874, formalized set theory as part
of his work on answering questions related to the concept of infinity. For example:

• Are there more natural numbers (zero and the positive integers) than integers
(positive and negative numbers)?

• Are there more rational numbers (numbers that can be expressed as fractions) than
integers?

• Are there more irrational numbers (numbers that cannot be expressed as fractions,
such as pi, √2, etc.) than rational numbers?

The gist of Cantor’s work around infinity as it relates to the first two questions is that
the cardinalities of the sets of natural numbers, integers, and rational numbers are all
equal because you can map these numbers such that they form a sequence with a def-
inite starting point that extends forever in one direction. Even though there is never an
ending point, the cardinalities of these sets are said to be countably infinite because
there is a definite sequence that could be followed deterministically if you simply had
enough time to count them. The cardinality of a countably infinite set became known
by mathematicians as ℵ0, an official definition of infinity. Consider the following nu-
meric patterns that convey the basic idea behind countably infinite sets. Each pattern
shows a starting point that can extend infinitely:

• Natural numbers: 0, 1, 2, 3, 4, …

• Positive integers: 1, 2, 3, 4, 5, …

• Negative integers: ‒1, ‒2, ‒3, ‒4, ‒5, …

• Integers: 0, 1, ‒1, 2, ‒2, 3, ‒3, 4, ‒4, …

• Rational numbers: 0/0, 0/1, ‒1/1, ‒1/0, ‒1/-1, 0/‒1, 1/‒1, 1/0, 1/1, …

Notice that the pattern for the rational numbers is that you can start at the origin of
the Cartesian plane and build out a spiral in which each x/y coordinate pair is expressed
as a fraction, which is a rational number. (The two cases where it is undefined because
of division by zero are of no consequence to the cardinality of the set as a whole.)

As it runs out, however, the cardinality of the set of irrational numbers is not equal to
ℵ0, because it is impossible to arrange them in such a way that they are countable and
form a one-to-one correspondence back to a set having cardinality ℵ0. Cantor used
what became known as the famous diagonalization argument as the proof. The gist of
the diagonalization proof is that just when you think you’ve mapped out a sequence
that makes the irrational numbers countable, it can be shown that a whole slew of
numbers are missing—and when you put these missing numbers into the sequence,
there are still a slew of numbers missing. As it turns out, you can never form the one-
to-one correspondence that’s necessary. Thus, the cardinality of the set of irrational
numbers is not the same as the cardinalities of the sets of natural numbers, positive

A Lean, Mean Data-Collecting Machine | 95

integers, and irrational numbers, because a one-to-one correspondence from one of
these sets cannot be derived.

So what is the cardinality of the set of irrational numbers? It can be shown that the
power set of the set having cardinality ℵ0 is the cardinality of the set of all irrational
numbers. This value is known as ℵ1. Further, the power set of the set having cardinality
ℵ1 is known as ℵ2, etc. Computing the power set of a set of infinite numbers is admit-
tedly a difficult concept to wrap one’s head around, but it’s one well worth pondering
when you’re having trouble sleeping at night.

Souping Up the Machine with Basic Friend/Follower Metrics
Redis should serve you well on your quest to efficiently process and analyze vast
amounts of Twitter data for certain kinds of queries. Adapting Example 4-2 with some
additional logic to house data in Redis requires only a simple change, and Exam-
ple 4-4 is an update that computes some basic friend/follower statistics. Native func-
tions in Redis are used to compute the set operations.

Example 4-4. Harvesting, storing, and computing statistics about friends and followers
(friends_followers__friend_follower_symmetry.py)

-*- coding: utf-8 -*-

import sys
import locale
import time
import functools
import twitter
import redis
from twitter__login import login

A template-like function for maximizing code reuse,
which is essentially a wrapper around makeTwitterRequest
with some additional logic in place for interfacing with
Redis
from twitter__util import _getFriendsOrFollowersUsingFunc

Creates a consistent key value for a user given a screen name
from twitter__util import getRedisIdByScreenName

SCREEN_NAME = sys.argv[1]

MAXINT = sys.maxint

For nice number formatting
locale.setlocale(locale.LC_ALL, '')

You may need to setup your OAuth settings in twitter__login.py

t = login()

96 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

Connect using default settings for localhost
r = redis.Redis()

Some wrappers around _getFriendsOrFollowersUsingFunc
that bind the first two arguments

getFriends = functools.partial(_getFriendsOrFollowersUsingFunc,
 t.friends.ids, 'friend_ids', t, r)

getFollowers = functools.partial(_getFriendsOrFollowersUsingFunc,
 t.followers.ids, 'follower_ids', t, r)

screen_name = SCREEN_NAME

get the data

print >> sys.stderr, 'Getting friends for %s...' % (screen_name,)
getFriends(screen_name, limit=MAXINT)

print >> sys.stderr, 'Getting followers for %s...' % (screen_name,)
getFollowers(screen_name, limit=MAXINT)

use redis to compute the numbers

n_friends = r.scard(getRedisIdByScreenName(screen_name, 'friend_ids'))

n_followers = r.scard(getRedisIdByScreenName(screen_name, 'follower_ids'))

n_friends_diff_followers = r.sdiffstore('temp',
 [getRedisIdByScreenName(screen_name,
 'friend_ids'),
 getRedisIdByScreenName(screen_name,
 'follower_ids')])
r.delete('temp')

n_followers_diff_friends = r.sdiffstore('temp',
 [getRedisIdByScreenName(screen_name,
 'follower_ids'),
 getRedisIdByScreenName(screen_name,
 'friend_ids')])
r.delete('temp')

n_friends_inter_followers = r.sinterstore('temp',
 [getRedisIdByScreenName(screen_name, 'follower_ids'),
 getRedisIdByScreenName(screen_name, 'friend_ids')])
r.delete('temp')

print '%s is following %s' % (screen_name, locale.format('%d', n_friends, True))
print '%s is being followed by %s' % (screen_name, locale.format('%d',
 n_followers, True))
print '%s of %s are not following %s back' % (locale.format('%d',
 n_friends_diff_followers, True), locale.format('%d', n_friends, True),
 screen_name)
print '%s of %s are not being followed back by %s' % (locale.format('%d',
 n_followers_diff_friends, True), locale.format('%d', n_followers, True),

A Lean, Mean Data-Collecting Machine | 97

 screen_name)
print '%s has %s mutual friends' \
 % (screen_name, locale.format('%d', n_friends_inter_followers, True))

Aside from the use of functools.partial (http://docs.python.org/library/functools
.html) to create getFriends and getFollowers from a common piece of parameter-bound
code, Example 4-4 should be pretty straightforward. There’s one other very subtle thing
to notice: there isn’t a call to r.save in Example 4-4, which means that the settings in
redis.conf dictate when data is persisted to disk. By default, Redis stores data in memory
and asynchronously snapshots data to disk according to a schedule that’s dictated by
whether or not a number of changes have occurred within a specified time interval. The
risk with asynchronous writes is that you might lose data if certain unexpected condi-
tions, such as a system crash or power outage, were to occur. Redis provides an “append
only” option that you can enable in redis.conf to hedge against this possibility.

It is highly recommended that you enable the appendonly option in
redis.conf to protect against data loss; see the “Append Only File
HOWTO” for helpful details.

Consider the following output, relating to Tim O’Reilly’s network of followers. Keeping
in mind that there’s a rate limit of 350 OAuth requests per hour, you could expect this
code to take a little less than an hour to run, because approximately 300 API calls would
need to be made to collect all the follower ID values:

timoreilly is following 663
timoreilly is being followed by 1,423,704
131 of 633 are not following timoreilly back
1,423,172 of 1,423,704 are not being followed back by timoreilly
timoreilly has 532 mutual friends

Note that while you could choose to settle for harvesting a smaller number of followers
to avoid the rate limit‒imposed wait, the API documentation does not state that taking
the first N pages’ worth of data would yield a truly random sample, and it appears that
data is returned in reverse chronological order—so, you may not be able to extrapolate
in a predictable way whether your logic depends on it. For example, if the first 10,000
followers returned just so happened to contain the 532 mutual friends, extrapolation
from those points would result in a skewed analysis because these results are not at all
representative of the larger population. For a very popular Twitterer such as Britney
Spears, with well over 5,000,000 followers, somewhere in the neighborhood of 1,000
API calls would be required to fetch all of the followers over approximately a four-hour
period. In general, the wait is probably worth it for this kind of data, and you could use
the Twitter-streaming APIs to keep your data up-to-date so that you never have to go
through the entire ordeal again.

98 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

One common source of error for some kinds of analysis is to forget about
the overall size of a population relative to your sample. For example,
randomly sampling 10,000 of Tim O’Reilly’s friends and followers
would actually give you the full population of his friends, yet only a tiny
fraction of his followers. Depending on the sophistication of your anal-
ysis, the sample size relative to the overall size of a population can make
a difference in determining whether the outcome of an experiment is
statistically significant, and the level of confidence you can have about it.

Given even these basic friend/follower stats, a couple of questions that lead us toward
other interesting analyses naturally follow. For example, who are the 131 people who
are not following Tim O’Reilly back? Given the various possibilities that could be con-
sidered about friends and followers, the “Who isn’t following me back?” question is
one of the more interesting ones and arguably can provide a lot of insight about a
person’s interests. So, how can we answer this question?

Staring at a list of user IDs isn’t very riveting, so resolving those user IDs to actual user
objects is the first obvious step. Example 4-5 extends Example 4-4 by encapsulating
common error-handling code into reusable form. It also provides a function that dem-
onstrates how to resolve those ID values to screen names using the /users/lookup API,
which accepts a list of up to 100 user IDs or screen names and returns the same basic
user information that you saw earlier with /users/show.

Example 4-5. Resolving basic user information such as screen names from IDs
(friends_followers__get_user_info.py)

-*- coding: utf-8 -*-

import sys
import json
import redis
from twitter__login import login

A makeTwitterRequest call through to the /users/lookup
resource, which accepts a comma separated list of up
to 100 screen names. Details are fairly uninteresting.
See also http://dev.twitter.com/doc/get/users/lookup
from twitter__util import getUserInfo

if __name__ == "__main__":
 screen_names = sys.argv[1:]

 t = login()
 r = redis.Redis()

 print json.dumps(
 getUserInfo(t, r, screen_names=screen_names),
 indent=4
)

A Lean, Mean Data-Collecting Machine | 99

Although not reproduced in its entirety, the getUserInfo function that’s imported from
twitter__util is essentially just a makeTwitterRequest to the /users/lookup resource
using a list of screen names. The following snippet demonstrates:

def getUserInfo(t, r, screen_names):
 info = []
 response = makeTwitterRequest(t,
 t.users.lookup,
 screen_name=','.join(screen_names)
)

 for user_info in response:
 r.set(getRedisIdByScreenName(user_info['screen_name'], 'info.json'),
 json.dumps(user_info))
 r.set(getRedisIdByUserId(user_info['id'], 'info.json'),
 json.dumps(user_info))

 info.extend(response)

 return info

It’s worthwhile to note that getUserInfo stores the same user information under two
different keys: the user ID and the screen name. Storing both of these keys allows us to
easily look up a screen name given a user ID value and a user ID value given a screen
name. Translating a user ID value to a screen name is a particularly useful operation
since the social graph APIs for getting friends and followers return only ID values, which
have no intuitive value until they are resolved against screen names and other basic user
information. While there is redundant storage involved in this scheme, compared to
other approaches, the convenience is arguably worth it. Feel free to take a leaner ap-
proach if storage is a concern.

An example user information object for Tim O’Reilly follows in Example 4-6, illus-
trating the kind of information available about Twitterers. The sky is the limit with
what you can do with data that’s this rich. We won’t mine the user descriptions and
tweets of the folks who aren’t following Tim back and put them in print, but you should
have enough to work with should you wish to conduct that kind of analysis.

Example 4-6. Example user object represented as JSON data for Tim O’Reilly

{
 "id": 2384071,
 "verified": true,
 "profile_sidebar_fill_color": "e0ff92",
 "profile_text_color": "000000",
 "followers_count": 1423326,
 "protected": false,
 "location": "Sebastopol, CA",
 "profile_background_color": "9ae4e8",
 "status": {
 "favorited": false,
 "contributors": null,
 "truncated": false,

100 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

 "text": "AWESOME!! RT @adafruit: a little girl asks after seeing adafruit ...",
 "created_at": "Sun May 30 00:56:33 +0000 2010",
 "coordinates": null,
 "source": "Seesmic",
 "in_reply_to_status_id": null,
 "in_reply_to_screen_name": null,
 "in_reply_to_user_id": null,
 "place": null,
 "geo": null,
 "id": 15008936780
 },
 "utc_offset": -28800,
 "statuses_count": 11220,
 "description": "Founder and CEO, O'Reilly Media. Watching the alpha geeks...",
 "friends_count": 662,
 "profile_link_color": "0000ff",
 "profile_image_url": "http://a1.twimg.com/profile_images/941827802/IMG_...jpg",
 "notifications": false,
 "geo_enabled": true,
 "profile_background_image_url": "http://a1.twimg.com/profile_background_...gif",
 "name": "Tim O'Reilly",
 "lang": "en",
 "profile_background_tile": false,
 "favourites_count": 10,
 "screen_name": "timoreilly",
 "url": "http://radar.oreilly.com",
 "created_at": "Tue Mar 27 01:14:05 +0000 2007",
 "contributors_enabled": false,
 "time_zone": "Pacific Time (US & Canada)",
 "profile_sidebar_border_color": "87bc44",
 "following": false
}

The refactored logic for handling HTTP errors and obtaining user information in
batches is provided in the following sections. Note that the handleTwitterHTTPError
function intentionally doesn’t include error handling for every conceivable error case,
because the action you may want to take will vary from situation to situation. For
example, in the event of a urllib2.URLError (operation timed out) that is triggered
because someone unplugged your network cable, you want to prompt the user for a
specific course of action.

Example 4-5 brings to light some good news and some not-so-good news. The good
news is that resolving the user IDs to user objects containing a byline, location infor-
mation, the latest tweet, etc. is a treasure trove of information. The not-so-good news
is that it’s quite expensive to do this in terms of rate limiting, given that you can only
get data back in batches of 100. For Tim O’Reilly’s friends, that’s only seven API calls.
For his followers, however, it’s over 14,000, which would take nearly two days to col-
lect, given a rate limit of 350 calls per hour (and no glitches in harvesting).

A Lean, Mean Data-Collecting Machine | 101

However, given a full collection of anyone’s friends and followers ID values, you can
randomly sample and calculate measures of statistical significance to your heart’s con-
tent. Redis provides the srandmember function that fits the bill perfectly. You pass it the
name of a set, such as timoreilly$follower_ids, and it returns a random member of
that set.

Calculating Similarity by Computing Common Friends and Followers
Another piece of low-hanging fruit that we can go after is computing the friends and
followers that two or more Twitterers have in common. Within a given universe, these
folks might be interesting for a couple of reasons. One reason is that they’re the “com-
mon thread” connecting various disparate networks; you might interpret this to be a
type of similarity metric. For example, if two users were both following a large number
of the same people, you might conclude that those two users had very similar interests.
From there, you might start to analyze the information embedded in the tweets of the
common friends to gain more insight into what those people have in common, if any-
thing, or make other conclusions. It turns out that computing common friends and
followers is just a set operation away. Example 4-7 illustrates the use of Redis’s sinter
store function, which stores the result of a set intersection, and introduces locale.for
mat for pretty-printing so that the output is easier to read.

Example 4-7. Finding common friends/followers for multiple Twitterers, with output that’s easier on
the eyes (friends_followers__friends_followers_in_common.py)

-*- coding: utf-8 -*-

import sys
import redis

from twitter__util import getRedisIdByScreenName

A pretty-print function for numbers
from twitter__util import pp

r = redis.Redis()

def friendsFollowersInCommon(screen_names):
 r.sinterstore('temp$friends_in_common',
 [getRedisIdByScreenName(screen_name, 'friend_ids')
 for screen_name in screen_names]
)

 r.sinterstore('temp$followers_in_common',
 [getRedisIdByScreenName(screen_name, 'follower_ids')
 for screen_name in screen_names]
)

 print 'Friends in common for %s: %s' % (', '.join(screen_names),
 pp(r.scard('temp$friends_in_common')))

102 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

 print 'Followers in common for %s: %s' % (', '.join(screen_names),
 pp(r.scard('temp$followers_in_common')))

 # Clean up scratch workspace

 r.delete('temp$friends_in_common')
 r.delete('temp$followers_in_common')

if __name__ == "__main__":
 if len(sys.argv) < 3:
 print >> sys.stderr, "Please supply at least two screen names."
 sys.exit(1)

 # Note:
 # The assumption is that the screen names you are
 # supplying have already been added to Redis.
 # See friends_followers__get_friends__refactored.py

 friendsFollowersInCommon(sys.argv[1:])

Note that although the values in the working sets are ID values, you could easily use
Redis’ randomkey function to sample friends and followers, and use the getUserInfo
function from Example 4-5 to resolve useful information such as screen names, most
recent tweets, locations, etc.

Measuring Influence
When someone shares information via a service such as Twitter, it’s only natural to
wonder how far the information penetrates into the overall network by means of being
retweeted. It should be fair to assume that the more followers a person has, the greater
the potential is for that person’s tweets to be retweeted. Users who have a relatively
high overall percentage of their originally authored tweets retweeted can be said to be
more influential than users who are retweeted infrequently. Users who have a relatively
high percentage of their tweets retweeted, even if they are not originally authored, might
be said to be mavens—people who are exceptionally well connected and like to share
information.§ One trivial way to measure the relative influence of two or more users is
to simply compare their number of followers, since every follower will have a direct
view of their tweets. We already know from Example 4-6 that we can get the number
of followers (and friends) for a user via the /users/lookup and /users/show APIs. Ex-
tracting that information from these APIs is trivial enough:

for screen_name in screen_names:
 _json = json.loads(r.get(getRedisIdByScreenName(screen_name, "info.json")))
 n_friends, n_followers = _json['friends_count'], _json['followers_count']

§ See The Tipping Point by Malcolm Gladwell (Back Bay Books) for a great discourse on mavens.

A Lean, Mean Data-Collecting Machine | 103

Counting numbers of followers is interesting, but there’s so much more that can be
done. For example, a given user may not have the popularity of an information maven
like Tim O’Reilly, but if you have him as a follower and he retweets you, you’ve sud-
denly tapped into a vast network of people who might just start to follow you once
they’ve determined that you’re also interesting. Thus, a much better approach that you
might take in calculating users’ potential influence is to not only compare their numbers
of followers, but to spider out into the network a couple of levels. In fact, we can use
the very same breadth-first approach that was introduced in Example 2-4.

Example 4-8 illustrates a generalized crawl function that accepts a list of screen names,
a crawl depth, and parameters that control how many friends and followers to retrieve.
The friends_limit and followers_limit parameters control how many items to fetch
from the social graph APIs (in batches of 5,000), while friends_sample and follow
ers_sample control how many user objects to retrieve (in batches of 100). An updated
function for getUserInfo is also included to reflect the pass-through of the sampling
parameters.

Example 4-8. Crawling friends/followers connections (friends_followers__crawl.py)

-*- coding: utf-8 -*-

import sys
import redis
import functools
from twitter__login import login
from twitter__util import getUserInfo
from twitter__util import _getFriendsOrFollowersUsingFunc

SCREEN_NAME = sys.argv[1]

t = login()
r = redis.Redis()

Some wrappers around _getFriendsOrFollowersUsingFunc that
create convenience functions

getFriends = functools.partial(_getFriendsOrFollowersUsingFunc,
 t.friends.ids, 'friend_ids', t, r)
getFollowers = functools.partial(_getFriendsOrFollowersUsingFunc,
 t.followers.ids, 'follower_ids', t, r)

def crawl(
 screen_names,
 friends_limit=10000,
 followers_limit=10000,
 depth=1,
 friends_sample=0.2, #XXX
 followers_sample=0.0,
):

 getUserInfo(t, r, screen_names=screen_names)
 for screen_name in screen_names:

104 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

 friend_ids = getFriends(screen_name, limit=friends_limit)
 follower_ids = getFollowers(screen_name, limit=followers_limit)

 friends_info = getUserInfo(t, r, user_ids=friend_ids,
 sample=friends_sample)

 followers_info = getUserInfo(t, r, user_ids=follower_ids,
 sample=followers_sample)

 next_queue = [u['screen_name'] for u in friends_info + followers_info]

 d = 1
 while d < depth:
 d += 1
 (queue, next_queue) = (next_queue, [])
 for _screen_name in queue:
 friend_ids = getFriends(_screen_name, limit=friends_limit)
 follower_ids = getFollowers(_screen_name, limit=followers_limit)

 next_queue.extend(friend_ids + follower_ids)

 # Note that this function takes a kw between 0.0 and 1.0 called
 # sample that allows you to crawl only a random sample of nodes
 # at any given level of the graph

 getUserInfo(user_ids=next_queue)

if __name__ == '__main__':
 if len(sys.argv) < 2:
 print "Please supply at least one screen name."
 else:
 crawl([SCREEN_NAME])

 # The data is now in the system. Do something interesting. For example,
 # find someone's most popular followers as an indiactor of potential influence.
 # See friends_followers__calculate_avg_influence_of_followers.py

Assuming you’ve run crawl with high enough numbers for friends_limit and follow
ers_limit to get all of a users’ friend IDs and follower IDs, all that remains is to take a
large enough random sample and calculate interesting metrics, such as the average
number of followers one level out. It could also be fun to look at his top N followers
to get an idea of who he might be influencing. Example 4-9 demonstrates one possible
approach that pulls the data out of Redis and calculates Tim O’Reilly’s most popular
followers.

Example 4-9. Calculating a Twitterer’s most popular followers
(friends_followers__calculate_avg_influence_of_followers.py)

-*- coding: utf-8 -*-

import sys
import json
import locale
import redis

A Lean, Mean Data-Collecting Machine | 105

from prettytable import PrettyTable

Pretty printing numbers
from twitter__util import pp

These functions create consistent keys from
screen names and user id values
from twitter__util import getRedisIdByScreenName
from twitter__util import getRedisIdByUserId

SCREEN_NAME = sys.argv[1]

locale.setlocale(locale.LC_ALL, '')

def calculate():
 r = redis.Redis() # Default connection settings on localhost

 follower_ids = list(r.smembers(getRedisIdByScreenName(SCREEN_NAME,
 'follower_ids')))

 followers = r.mget([getRedisIdByUserId(follower_id, 'info.json')
 for follower_id in follower_ids])
 followers = [json.loads(f) for f in followers if f is not None]

 freqs = {}
 for f in followers:
 cnt = f['followers_count']
 if not freqs.has_key(cnt):
 freqs[cnt] = []

 freqs[cnt].append({'screen_name': f['screen_name'], 'user_id': f['id']})

 # It could take a few minutes to calculate freqs, so store a snapshot for later use

 r.set(getRedisIdByScreenName(SCREEN_NAME, 'follower_freqs'),
 json.dumps(freqs))

 keys = freqs.keys()
 keys.sort()

 print 'The top 10 followers from the sample:'

 fields = ['Date', 'Count']
 pt = PrettyTable(fields=fields)
 [pt.set_field_align(f, 'l') for f in fields]

 for (user, freq) in reversed([(user['screen_name'], k) for k in keys[-10:]
 for user in freqs[k]]):
 pt.add_row([user, pp(freq)])

 pt.printt()

 all_freqs = [k for k in keys for user in freqs[k]]
 avg = reduce(lambda x, y: x + y, all_freqs) / len(all_freqs)

106 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

 print "\nThe average number of followers for %s's followers: %s" \
 % (SCREEN_NAME, pp(avg))

psyco can only compile functions, so wrap code in a function

try:
 import psyco
 psyco.bind(calculate)
except ImportError, e:
 pass # psyco not installed

calculate()

In many common number-crunching situations, the psyco module can
dynamically compile code and produce dramatic speed improvements.
It’s totally optional but definitely worth a hard look if you’re performing
calculations that take more than a few seconds.

Output follows for a sample size of about 150,000 (approximately 10%) of Tim O’Re-
illy’s followers. For statistical analysis, this high of a sample size relative to the popu-
lation ensures a tiny margin of error and a very high confidence level.‖ That is, the
results can be considered very representative, though not quite the same thing as the
absolute truth about the population:

The top 10 followers from the sample:
aplusk 4,993,072
BarackObama 4,114,901
mashable 2,014,615
MarthaStewart 1,932,321
Schwarzenegger 1,705,177
zappos 1,689,289
Veronica 1,612,827
jack 1,592,004
stephenfry 1,531,813
davos 1,522,621

The average number of followers for timoreilly's followers: 445

Interestingly, a few familiar names show up on the list, including some of the most
popular Twitterers of all time: Ashton Kutcher (@aplusk), Barack Obama, Martha
Stewart, and Arnold Schwarzenegger, among others. Removing these top 10 followers
and recalculating lowers the average number of followers of Tim’s followers to ap-
proximately 284. Removing any follower with less than 10 followers of her own, how-
ever, dramatically increases the number to more than 1,000! Noting that there are tens
of thousands of followers in this range and briefly perusing their profiles, however, does
bring some reality into the situation: many of these users are spam accounts, users who
are protecting their tweets, etc. Culling out the top 10 followers and all followers having

‖ It’s about a 0.14 margin of error for a 99% confidence level.

A Lean, Mean Data-Collecting Machine | 107

fewer than 10 followers of their own might be a reasonable metric to work with; doing
both of these things results in a number around 800, which is still quite high. There
must be something to be said for the idea of getting retweeted by a popular Twitterer
who has lots of connections to other popular Twitterers.

Constructing Friendship Graphs
This chapter has used sets as the primary data structure for storing and manipulating
data because we’ve primarily been manipulating collections of items such as ID values,
and set operations have provided some powerful operations in exchange for very little
effort. While there are usually a few general-purpose tools that work fairly well for most
jobs, there aren’t any tools that work well for every job. You have a price to pay either
way; generally speaking, the price is either paid up front, when you store the data in
special indexes (as you learned was the case with CouchDB in the previous chapter),
or at query time, when you look it up and don’t have the benefit of those indexes. If
you really must have it both ways, you end up paying for it in terms of redundant storage
and the complexities associated with denormalization of the data—not to mention the
maintenance of the source code itself.

When you start asking questions that lend themselves to a network topology, you may
want to export your Redis data into a graph database such as NetworkX (introduced
back in Chapter 1). There are many possible graphs you could construct, but let’s
assume you’re interested in analyzing the friendships that exist in someone’s social
network, so you want a graph indicating which people are friends with one another.
Given that social graphs provide tremendous insight and that Example 4-8 already
provides the machinery for crawling Twitter relationships, take some time to harvest
friendship data for one or more interesting Twitterers. The remainder of this section
introduces some examples for analyzing it.

Assuming you’ve harvested friendship data and stored it away in Redis, Exam-
ple 4-10 demonstrates how to construct a graph of all the common friendships that
exist for a user. Basically, you just systematically walk over all the users in a nested loop
and create edges whenever a friendship exists between any two people in the universe
being considered. Once the data is available to NetworkX, you suddenly have a full
arsenal of graph algorithms and utilities at your fingertips. The next section investigates
a few of the valuable things you can mine out of a friendship graph.

Example 4-10. Exporting friend/follower data from Redis to NetworkX for easy graph analytics
(friends_followers__redis_to_networkx.py)

-*- coding: utf-8 -*-

Summary: Build up a digraph where an edge exists between two users
if the source node is following the destination node

import os
import sys

108 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

import json
import networkx as nx
import redis

from twitter__util import getRedisIdByScreenName
from twitter__util import getRedisIdByUserId

SCREEN_NAME = sys.argv[1]

g = nx.Graph()
r = redis.Redis()

Compute all ids for nodes appearing in the graph

friend_ids = list(r.smembers(getRedisIdByScreenName(SCREEN_NAME, 'friend_ids')))
id_for_screen_name = json.loads(r.get(getRedisIdByScreenName(SCREEN_NAME,
 'info.json')))['id']
ids = [id_for_screen_name] + friend_ids

for current_id in ids:
 print >> sys.stderr, 'Processing user with id', current_id

 try:
 current_info = json.loads(r.get(getRedisIdByUserId(current_id, 'info.json'
)))
 current_screen_name = current_info['screen_name']
 friend_ids = list(r.smembers(getRedisIdByScreenName(current_screen_name,
 'friend_ids')))

 # filter out ids for this person if they aren't also SCREEN_NAME's friends too,
 # which is the basis of the query

 friend_ids = [fid for fid in friend_ids if fid in ids]
 except Exception, e:
 print >> sys.stderr, 'Skipping', current_id

 for friend_id in friend_ids:
 try:
 friend_info = json.loads(r.get(getRedisIdByUserId(friend_id,
 'info.json')))
 except TypeError, e:
 print >> sys.stderr, '\tSkipping', friend_id, 'for', current_screen_name
 continue

 g.add_edge(current_screen_name, friend_info['screen_name'])

Pickle the graph to disk...

if not os.path.isdir('out'):
 os.mkdir('out')

filename = os.path.join('out', SCREEN_NAME + '.gpickle')
nx.write_gpickle(g, filename)

print 'Pickle file stored in: %s' % filename

Constructing Friendship Graphs | 109

You can un-pickle like so...

g = nx.read_gpickle(os.path.join('out', SCREEN_NAME + '.gpickle'))

With the task of constructing a convenient graph representation from the friendships
you’ve crawled and stored in Redis, let’s now turn to the fun part: analyzing it.

Clique Detection and Analysis
Example 4-10 provides a terse routine that demonstrates how you might go about
discovering friendship cliques that exist for a given user by importing data from Redis
and repeatedly adding edges to the graph via the idempotent add_edge operation. For
example, if Abe is friends with Bob, Carol, and Dale, and Bob and Carol are also friends,
the largest (“maximum”) clique in the graph exists among Abe, Bob, and Carol. If Abe,
Bob, Carol, and Dale were all mutual friends, however, the graph would be fully con-
nected, and the maximum clique would be of size 4. Adding nodes to the graph might
create additional cliques, but it would not necessarily affect the size of the maximum
clique in the graph. In the context of the social web, cliques are fascinating because
they are representative of mutual friendships, and the maximum clique is interesting
because it indicates the largest set of common friendships in the graph. Given two social
networks, comparing the sizes of the maximum friendship cliques might provide a lot
of insight about group dynamics, among other things.

Figure 4-2 illustrates a sample graph with the maximum clique highlighted. This graph
would be said to have a clique number of size 4.

Technically speaking, there is a difference between a maximal clique
and a maximum clique. The maximum clique is the largest clique in the
graph (or cliques in the graph, if they have the same size). A maximal
clique, on the other hand, is one that is not a subgraph of another clique.
The maximum clique is also a maximal clique in that it isn’t a subgraph
of any other clique. However, various other maximal cliques often exist
in graphs and need not necessarily share any nodes with the maximum
clique. Figure 4-2, for example, illustrates a maximum clique of size 4,
but there are several other maximal cliques of size 3 in the graph as well.

Finding cliques is an NP-complete problem (implying an exponential runtime), but
NetworkX does provide the find_cliques method, which delivers a solid implementa-
tion that takes care of the heavy lifting. Just be advised that it might take a long time
to run as graphs get beyond a reasonably small size.

110 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

Figure 4-2. An example graph containing a maximum clique of size 4

Example 4-11 could be modified in any number of ways to compute interesting things,
so long as you’ve first harvested the necessary friendship information. Assuming you’ve
first constructed a graph as demonstrated in the previous section, it shows you how to
use some of the NetworkX APIs for finding and analyzing cliques.

Example 4-11. Using NetworkX to find cliques in graphs (friends_followers__clique_analysis.py)

-*- coding: utf-8 -*-

import sys
import json
import networkx as nx

G = sys.argv[1]

g = nx.read_gpickle(G)

Finding cliques is a hard problem, so this could
take awhile for large graphs.
See http://en.wikipedia.org/wiki/NP-complete and
http://en.wikipedia.org/wiki/Clique_problem

cliques = [c for c in nx.find_cliques(g)]

num_cliques = len(cliques)

clique_sizes = [len(c) for c in cliques]
max_clique_size = max(clique_sizes)
avg_clique_size = sum(clique_sizes) / num_cliques

max_cliques = [c for c in cliques if len(c) == max_clique_size]

num_max_cliques = len(max_cliques)

Constructing Friendship Graphs | 111

max_clique_sets = [set(c) for c in max_cliques]
people_in_every_max_clique = list(reduce(lambda x, y: x.intersection(y),
 max_clique_sets))

print 'Num cliques:', num_cliques
print 'Avg clique size:', avg_clique_size
print 'Max clique size:', max_clique_size
print 'Num max cliques:', num_max_cliques
print
print 'People in all max cliques:'
print json.dumps(people_in_every_max_clique, indent=4)
print
print 'Max cliques:'
print json.dumps(max_cliques, indent=4)

Sample output from the script follows for Tim O’Reilly’s 600+ friendships and reveals
some interesting insights. There are over 750,000 total cliques in the network, with an
average clique size of 14 and a maximum clique size of 26. In other words, the largest
number of people who are fully connected among Tim’s friends is 26, and there are 6
distinct cliques of this size, as illustrated in the sample output in Example 4-12. The
same individuals account for 20/26 of the population in all 6 of those cliques. You
might think of these members as being especially foundational for Tim’s friend net-
work. Generally speaking, being able to discover cliques (especially maximal cliques
and the maximum clique) in graphs can yield extremely powerful insight into complex
data. An analysis of the similarity/diversity of tweet content among members of a large
clique would be a very worthy exercise in tweet analysis. (More on tweet analysis in
the next chapter.)

Example 4-12. Sample output from Example 4-11, illustrating common members of maximum cliques

Num cliques: 762573
Avg clique size: 14
Max clique size: 26
Num max cliques: 6

People in all max cliques:
[
 "kwerb",
 "johnbattelle",
 "dsearls",
 "JPBarlow",
 "cshirky",
 "leolaporte",
 "MParekh",
 "mkapor",
 "steverubel",
 "stevenbjohnson",
 "LindaStone",
 "godsdog",
 "Joi",
 "jayrosen_nyu",

112 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

 "dweinberger",
 "timoreilly",
 "ev",
 "jason_pontin",
 "kevinmarks",
 "Mlsif"
]

Max cliques:
[
 [
 "timoreilly",
 "anildash",
 "cshirky",
 "ev",
 "pierre",
 "mkapor",
 "johnbattelle",
 "kevinmarks",
 "MParekh",
 "dsearls",
 "kwerb",
 "Joi",
 "LindaStone",
 "dweinberger",
 "SteveCase",
 "leolaporte",
 "steverubel",
 "Borthwick",
 "godsdog",
 "edyson",
 "dangillmor",
 "Mlsif",
 "JPBarlow",
 "stevenbjohnson",
 "jayrosen_nyu",
 "jason_pontin"
],

 ...

]

Clearly, there’s much more we could do than just detect the cliques. Plotting the loca-
tions of people involved in cliques on a map to see whether there’s any correlation
between tightly connected networks of people and geographic locale, and analyzing
information in their profile data and/or tweet content are among the possibilities. As
it turns out, the next chapter is all about analyzing tweets, so you might want to revisit
this idea once you’ve read it. But first, let’s briefly investigate an interesting Web API
from Infochimps that we might use as a sanity check for some of the analysis we’ve
been doing.

Constructing Friendship Graphs | 113

The Infochimps “Strong Links” API
Infochimps is an organization that provides an immense data catalog. Among its many
offerings is a huge archive of historical Twitter data and various value-added APIs to
operate on that data. One of the more interesting Twitter Metrics and Analytics APIs
is the Strong Links API, which returns a list of the users with whom the queried user
communicates most frequently. In order to access this API, you just need to sign up for
a free account to get an API key and then perform a simple GET request on a URL. The
only catch is that the results provide user ID values, which must be resolved to screen
names to be useful.# Fortunately, this is easy enough to do using existing code from
earlier in this chapter. The script in Example 4-13 demonstrates how to use the Info-
chimps Strong Links API and uses Redis to resolve screen names from user ID values.

Example 4-13. Grabbing data from the Infochimps Strong Links API
(friends_followers__infochimps_strong_links.py)

-*- coding: utf-8 -*-

import sys
import urllib2
import json
import redis

from twitter__util import getRedisIdByUserId

SCREEN_NAME = sys.argv[1]
API_KEY = sys.argv[2]
API_ENDPOINT = \
 'http://api.infochimps.com/soc/net/tw/strong_links.json?screen_name=%s&apikey=%s'

r = redis.Redis() # default connection settings on localhost

try:
 url = API_ENDPOINT % (SCREEN_NAME, API_KEY)
 response = urllib2.urlopen(url)
except urllib2.URLError, e:
 print 'Failed to fetch ' + url
 raise e

strong_links = json.loads(response.read())

resolve screen names and print to screen:

print "%s's Strong Links" % (SCREEN_NAME,)
print '-' * 30
for sl in strong_links['strong_links']:
 if sl is None:
 continue

#An Infochimps “Who Is” API is forthcoming and will provide a means of resolving screen names from user
IDs.

114 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

 try:
 user_info = json.loads(r.get(getRedisIdByUserId(sl[0], 'info.json')))
 print user_info['screen_name'], sl[1]
 except Exception, e:
 print >> sys.stderr, "ERROR: couldn't resolve screen_name for", sl
 print >> sys.stderr, "Maybe you haven't harvested data for this person yet?"

What’s somewhat interesting is that of the 20 individuals involved in all 6 of Tim’s
maximum cliques, only @kevinmarks appears in the results set. This seems to imply
that just because you’re tightly connected with friends on Twitter doesn’t necessarily
mean that you directly communicate with them very often. However, skipping ahead
a chapter, you’ll find in Table 5-2 that several of the Twitterers Tim retweets frequently
do appear in the strong links list—namely, @ahier, @gnat, @jamesoreilly,
@pahlkadot, @OReillyMedia, and @monkchips. (Note that @monkchips is second on
the list of strong links, as shown in Example 4-14.) Infochimps does not declare exactly
what the calculation is for its Strong Links API, except to say that it is built upon actual
tweet content, analysis of which is the subject of the next chapter. The lesson learned
here is that tightly connected friendship on Twitter need not necessarily imply frequent
communication. (And, Infochimps provides interesting APIs that are definitely worth
a look.)

Example 4-14. Sample results from the Infochimps Strong Links API from Example 4-13

timoreilly's Strong Links

jstan 20.115004
monkchips 11.317813
govwiki 11.199023
ahier 10.485066
ValdisKrebs 9.384349
SexySEO 9.224745
tdgobux 8.937282
Scobleizer 8.406802
cheeky_geeky 8.339885
seanjoreilly 8.182084
pkedrosky 8.154991
OReillyMedia 8.086607
FOSSwiki 8.055233
n2vip 8.052422
jamesoreilly 8.015188
pahlkadot 7.811676
ginablaber 7.763785
kevinmarks 7.7423387
jcantero 7.64023
gnat 7.6349654
KentBottles 7.40848
Bill_Romanos 7.3629074
make 7.326427
carlmalamud 7.3147154
rivenhomewood 7.276802
webtechman 7.1044493

Constructing Friendship Graphs | 115

Interactive 3D Graph Visualization
It’s a bit out of scope to take a dive into graph-layout algorithms, but it’s hard to pass
up an opportunity to introduce Ubigraph, a 3D interactive graph-visualization tool.
While there’s not really any analytical value in visualizing a clique, it’s nonetheless a
good exercise to learn the ropes. Ubigraph is trivial to install and comes with bindings
for a number of popular programming languages, including Python. Example 4-15
illustrates an example usage of Ubigraph for graphing the common members among
the maximum cliques for a network. The bad news is that this is one of those oppor-
tunities where Windows folks will probably need to consider running a Linux-based
virtual machine, since it is unlikely that there will be a build of the Ubigraph server
anytime soon. The good news is that it’s not very difficult to pull this together, even if
you don’t have advanced knowledge of Linux.

Example 4-15. Visualizing graph data with Ubigraph (friends_followers__ubigraph.py)

-*- coding: utf-8 -*-

import sys
import json
import networkx as nx

Packaged with Ubigraph in the examples/Python directory
import ubigraph

SCREEN_NAME = sys.argv[1]
FRIEND = sys.argv[2]

g = nx.read_gpickle(SCREEN_NAME + '.gpickle')

cliques = [c for c in nx.find_cliques(g) if FRIEND in c]
max_clique_size = max([len(c) for c in cliques])
max_cliques = [c for c in cliques if len(c) == max_clique_size]

print 'Found %s max cliques' % len(max_cliques)
print json.dumps(max_cliques, indent=4)

U = ubigraph.Ubigraph()
U.clear()
small = U.newVertexStyle(shape='sphere', color='#ffff00', size='0.2')
largeRed = U.newVertexStyle(shape='sphere', color='#ff0000', size='1.0')

find the people who are common to all cliques for visualization

vertices = list(set([v for c in max_cliques for v in c]))
vertices = dict([(v, U.newVertex(style=small, label=v)) for v in vertices if v
 not in (SCREEN_NAME, FRIEND)])

vertices[SCREEN_NAME] = U.newVertex(style=largeRed, label=SCREEN_NAME)
vertices[FRIEND] = U.newVertex(style=largeRed, label=FRIEND)

for v1 in vertices:

116 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

 for v2 in vertices:
 if v1 == v2:
 continue
 U.newEdge(vertices[v1], vertices[v2])

All in all, you just create a graph and add vertices and edges to it. Note that unlike in
NetworkX, however, nodes are not defined by their labels, so you do have to take care
not to add duplicate nodes to the same graph. The preceding example demonstrates
building a graph by iterating through a dictionary of vertices with minor customizations
so that some nodes are easier to see than others. Following the pattern of the previous
examples, this particular listing would visualize the common members of the maximum
cliques shared between a particular user (Tim O’Reilly, in this case) and a friend (de-
fined by FRIEND)—in other words, the largest clique containing two constrained nodes.
Figure 4-3 shows a screenshot of Ubigraph at work. Like most everything else in this
book, this is just the bare minimum of an introduction, intended to inspire you to go
out and do great things with data.

Summary
This chapter only began to scratch the surface of what is possible with Twitter data,
focusing primarily on the friend/follower relationships that can be discovered. A sample
implementation of a command-line tool that ties all of the functionality from this chap-
ter together is available at http://github.com/ptwobrussell/Mining-the-Social-Web/blob/
master/python_code/TwitterSocialGraphUtility.py, and you should be able to adapt it
fairly easily for your own purposes. (If you do, please consider forking it on GitHub
and making your changes available to everyone.) Some interesting ideas for fun exer-
cises follow:

• We didn’t tap into geo data in this chapter. Try plotting out a histogram of the
locations your followers are from and visualize it on an online map. Chapter 6 is
fairly heavy on geo data and provides a reasonable introduction to some mapping
technologies you might be able to use.

• Try doing some basic frequency analysis of words that are in the description field
of the user objects of your friends/followers. Chapters 7 and 8 provide tools and
techniques that you might find helpful.

• Try creating a histogram of the numbers of tweets by each of your followers to see
who is the chattiest. This data is available as statuses_count in user objects.

• We didn’t talk about lists—a way of grouping together users, usually because of
some common thread they share—in this chapter. Check out the API docs on list,
and write some code to try to determine who has listed you (or any Twitterer you
admire) and what similarities there are among the folks in the list. A good starting
point is to look at the lists a person appears in directly through Twitter’s public
web interface.

Summary | 117

Figure 4-3. Screenshot of an interactive 3D visualization of common members appearing in the
maximal cliques containing both @timoreilly and @mikeloukides (the screen shot doesn’t do it justice;
you really need to try this out interactively!)

118 | Chapter 4: Twitter: Friends, Followers, and Setwise Operations

CHAPTER 5

Twitter: The Tweet, the Whole Tweet,
and Nothing but the Tweet

Tweet and RT were sitting on a fence. Tweet fell off.
Who was left?

In this chapter, we’ll largely use CouchDB’s map/reduce capabilities to exploit the
entities in tweets (@mentions, #hashtags, etc.) to try to answer the question, “What’s
everyone talking about?” With overall throughput now far exceeding 50 million tweets
per day and occasional peak velocities in excess of 3,000 tweets per second, there’s vast
potential in mining tweet content, and this is the chapter where we’ll finally dig in.
Whereas the previous chapter primarily focused on the social graph linkages that exist
among friends and followers, this chapter focuses on learning as much as possible about
Twitterers by inspecting the entities that appear in their tweets. You’ll also see ties back
to Redis for accessing user data you have harvested from Chapter 4 and NetworkX for
graph analytics. So many tweets, so little time to mine them—let’s get started!

It is highly recommended that you read Chapters 3 and 4 before reading
this chapter. Much of its discussion builds upon the foundation those
chapters established, including Redis and CouchDB, which are again
used in this chapter.

Pen : Sword :: Tweet : Machine Gun (?!?)
If the pen is mightier than the sword, what does that say about the tweet? There are a
number of interesting incidents in which Twitter has saved lives, one of the most no-
torious being James Karl Buck’s famous “Arrested” tweet that led to his speedy release
when he was detained by Egyptian authorities. It doesn’t take too much work to find
evidence of similar incidents, as well as countless uses of Twitter for noble fundraising
efforts and other benevolent causes. Having an outlet really can make a huge difference
sometimes. More often than not, though, your home time line (tweet stream) and the

119

public time line are filled with information that’s not quite so dramatic or intriguing.
At times like these, cutting out some of the cruft can help you glimpse the big picture.
Given that as many as 50 percent of all tweets contain at least one entity that has been
intentionally crafted by the tweet author, they make a very logical starting point for
tweet analysis. In fact, Twitter has recognized their value and begun to directly expose
them in the time line API calls, and in early 2010 and as the year unfolded, they in-
creasingly became most standard throughout the entire Twitter API. Consider the tweet
in Example 5-1, retrieved from a time line API call with the opt-in include_enti
ties=true parameter specified in the query.

Example 5-1. A sample tweet from a search API that illustrates tweet entities

{
 "created_at" : "Thu Jun 24 14:21:11 +0000 2010",
 "entities" : {
 "hashtags" : [
 { "indices" : [97, 103],
 "text" : "gov20"
 },
 { "indices" : [104, 112],
 "text" : "opengov"
 }
],
 "urls" : [
 { "expanded_url" : null,
 "indices" : [76, 96],
 "url" : "http://bit.ly/9o4uoG"
 }
],
 "user_mentions" : [
 { "id" : 28165790,
 "indices" : [16, 28],
 "name" : "crowdFlower",
 "screen_name" : "crowdFlower"
 }
]
 },
 "id" : 16932571217,
 "text" : "Great idea from @crowdflower: Crowdsourcing the Goldman ... #opengov",
 "user" : {
 "description" : "Founder and CEO, O'Reilly Media. Watching the alpha ...",
 "id" : 2384071,
 "location" : "Sebastopol, CA",
 "name" : "Tim O'Reilly",
 "screen_name" : "timoreilly",
 "url" : "http://radar.oreilly.com",
 }
}

By default, a tweet specifies a lot of useful information about its author via the user
field in the status object, but the tweet entities provide insight into the content of the
tweet itself. By briefly inspecting this one sample tweet, we can safely infer that

120 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

@timoreilly is probably interested in the transformational topics of open government
and Government 2.0, as indicated by the hashtags included in the tweet. It’s probably
also safe to infer that @crowdflower has some relation to Government 2.0 and that the
URL may point to such related content. Thus, if you wanted to discover some additional
information about the author of this tweet in an automated fashion, you could consider
pivoting from @timoreilly over to @crowdflower and exploring that user’s tweets or
profile information, spawning a search on the hashtags included in the tweet to see
what kind of other information pops up, or following the link and doing some page
scraping to learn more about the underlying context of the tweet.

Given that there’s so much value to be gained from analyzing tweet entities, you’ll sorely
miss them in some APIs or from historical archives of Twitter data that are becoming
more and more common to mine. Instead of manually parsing them out of the text
yourself (not such an easy thing to do when tweets contain arbitrary Unicode charac-
ters), however, just easy_install twitter-text-py* so that you can focus your efforts
on far more interesting problems. The script in Example 5-2 illustrates some basic usage
of its Extractor class, which produces a structure similar to the one exposed by the time
line APIs. You have everything to gain and nothing to lose by automatically embedding
entities in this manner until tweet entities become the default.

As of December 2010, tweet entities were becoming more and more
common through the APIs, but were not quite officially “blessed” and
the norm. This chapter was written with the assumption that you’d want
to know how to parse them out for yourself, but you should realize that
keeping up with the latest happenings with the Twitter API might save
you some work. Manual extraction of tweet entities might also be very
helpful for situations in which you’re mining historical archives from
organizations such as Infochimps or GNIP.

Example 5-2. Extracting tweet entities with a little help from the twitter_text package
(the_tweet__extract_tweet_entities.py)

-*- coding: utf-8 -*-

import sys
import json
import twitter_text
import twitter
from twitter__login import login

Get a tweet id clicking on a status right off of twitter.com.
For example, http://twitter.com/#!/timoreilly/status/17386521699024896

TWEET_ID = sys.argv[1]

* The twitter-text-py module is a port of the twitter-text-rb module (both available via GitHub), which
Twitter uses in production.

Pen : Sword :: Tweet : Machine Gun (?!?) | 121

You may need to setup your OAuth settings in twitter__login.py
t = login()

def getEntities(tweet):

 # Now extract various entities from it and build up a familiar structure

 extractor = twitter_text.Extractor(tweet['text'])

 # Note that the production Twitter API contains a few additional fields in
 # the entities hash that would require additional API calls to resolve

 entities = {}
 entities['user_mentions'] = []
 for um in extractor.extract_mentioned_screen_names_with_indices():
 entities['user_mentions'].append(um)

 entities['hashtags'] = []
 for ht in extractor.extract_hashtags_with_indices():

 # massage field name to match production twitter api

 ht['text'] = ht['hashtag']
 del ht['hashtag']
 entities['hashtags'].append(ht)

 entities['urls'] = []
 for url in extractor.extract_urls_with_indices():
 entities['urls'].append(url)

 return entities

Fetch a tweet using an API method of your choice and mixin the entities

tweet = t.statuses.show(id=TWEET_ID)

tweet['entities'] = getEntities(tweet)

print json.dumps(tweet, indent=4)

Now, equipped with an overview of tweet entities and some of the interesting possi-
bilities, let’s get to work harvesting and analyzing some tweets.

Analyzing Tweets (One Entity at a Time)
CouchDB makes a great storage medium for collecting tweets because, just like the
email messages we looked at in Chapter 3, they are conveniently represented as JSON-
based documents and lend themselves to map/reduce analysis with very little effort.
Our next example script harvests tweets from time lines, is relatively robust, and should
be easy to understand because all of the modules and much of the code has already

122 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

been introduced in earlier chapters. One subtle consideration in reviewing it is that it
uses a simple map/reduce job to compute the maximum ID value for a tweet and passes
this in as a query constraint so as to avoid pulling duplicate data from Twitter’s API.
See the information associated with the since_id parameter of the time line APIs for
more details.

It may also be informative to note that the maximum number of most recent tweets
available from the user time line is around 3,200, while the home time line† returns
around 800 statuses; thus, it’s not very expensive (in terms of counting toward your
rate limit) to pull all of the data that’s available. Perhaps not so intuitive when first
interacting with the time line APIs is the fact that requests for data on the public time
line only return 20 tweets, and those tweets are updated only every 60 seconds. To
collect larger amounts of data you need to use the streaming API.

For example, if you wanted to learn a little more about Tim O’Reilly, “Silicon Valley’s
favorite smart guy,”‡ you’d make sure that CouchDB is running and then invoke the
script shown in Example 5-3, as follows:

$ python the_tweet__harvest_timeline.py user 16 timoreilly

It’ll only take a few moments while approximately 3,200 tweets’ worth of interesting
tidbits collect for your analytic pleasure.

Example 5-3. Harvesting tweets from a user or public time line (the_tweet__harvest_timeline.py)

-*- coding: utf-8 -*-

import sys
import time
import twitter
import couchdb
from couchdb.design import ViewDefinition
from twitter__login import login
from twitter__util import makeTwitterRequest

def usage():
 print 'Usage: $ %s timeline_name [max_pages] [user]' % (sys.argv[0],)
 print
 print '\ttimeline_name in [public, home, user]'
 print '\t0 < max_pages <= 16 for timeline_name in [home, user]'
 print '\tmax_pages == 1 for timeline_name == public'
 print 'Notes:'
 print '\t* ~800 statuses are available from the home timeline.'
 print '\t* ~3200 statuses are available from the user timeline.'
 print '\t* The public timeline updates once every 60 secs and returns 20 statuses.'
 print '\t* See the streaming/search API for additional options to harvest tweets.'

† The Twitter API documentation states that the friend time line is similar to the home time line, except that
it does not contain retweets for backward-compatibility purposes.

‡ See the May 2010 cover of Inc. magazine.

Analyzing Tweets (One Entity at a Time) | 123

 exit()

if len(sys.argv) < 2 or sys.argv[1] not in ('public', 'home', 'user'):
 usage()
if len(sys.argv) > 2 and not sys.argv[2].isdigit():
 usage()
if len(sys.argv) > 3 and sys.argv[1] != 'user':
 usage()

TIMELINE_NAME = sys.argv[1]
MAX_PAGES = int(sys.argv[2])

USER = None

KW = { # For the Twitter API call
 'count': 200,
 'skip_users': 'true',
 'include_entities': 'true',
 'since_id': 1,
 }
if TIMELINE_NAME == 'user':
 USER = sys.argv[3]
 KW['id'] = USER # id or screen name
if TIMELINE_NAME == 'home' and MAX_PAGES > 4:
 MAX_PAGES = 4
if TIMELINE_NAME == 'user' and MAX_PAGES > 16:
 MAX_PAGES = 16
if TIMELINE_NAME == 'public':
 MAX_PAGES = 1

t = login()

Establish a connection to a CouchDB database

server = couchdb.Server('http://localhost:5984')
DB = 'tweets-%s-timeline' % (TIMELINE_NAME,)

if USER:
 DB = '%s-%s' % (DB, USER)

try:
 db = server.create(DB)
except couchdb.http.PreconditionFailed, e:

 # Already exists, so append to it, keeping in mind that duplicates could occur

 db = server[DB]

 # Try to avoid appending duplicate data into the system by only retrieving tweets
 # newer than the ones already in the system. A trivial mapper/reducer combination
 # allows us to pull out the max tweet id which guards against duplicates for the
 # home and user timelines. It has no effect for the public timeline

124 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

 def idMapper(doc):
 yield (None, doc['id'])

 def maxFindingReducer(keys, values, rereduce):
 return max(values)

 view = ViewDefinition('index', 'max_tweet_id', idMapper, maxFindingReducer,
 language='python')
 view.sync(db)
 KW['since_id'] = int([_id for _id in db.view('index/max_tweet_id')][0].value)

Harvest tweets for the given timeline.
For friend and home timelines, the unofficial limitation is about 800 statuses although
other documentation may state otherwise. The public timeline only returns 20 statuses
and gets updated every 60 seconds.
See http://groups.google.com/group/twitter-development-talk/browse_thread/
thread/4678df70c301be43
Note that the count and since_id params have no effect for the public timeline

page_num = 1
while page_num <= MAX_PAGES:
 KW['page'] = page_num
 api_call = getattr(t.statuses, TIMELINE_NAME + '_timeline')
 tweets = makeTwitterRequest(t, api_call, **KW)
 db.update(tweets, all_or_nothing=True)
 print 'Fetched %i tweets' % len(tweets)
 wait_period = 2
 page_num += 1

Given some basic infrastructure for collecting tweets, let’s start hacking to see what
useful information we can discover.

Tapping (Tim’s) Tweets
This section investigates a few of the most common questions that come to mind from
a simple rack and stack of entities mined out of Tim O’Reilly’s user time line. Although
Tim has graciously agreed to being put under the microscope for educational purposes,
you could easily repurpose these scripts for your own tweets or apply them to any other
fascinating Twitterer. Or, you could begin with a reasonably large amount of public
time line data that you’ve collected as your initial basis of exploration. A few interesting
questions we’ll consider include:

• How many of the user entities that appear most frequently in Tim’s tweets are also
his friends?

• What are the most frequently occurring entities that appear in Tim’s tweets?

• Who does Tim retweet the most often?

• How many of Tim’s tweets get retweeted?

Analyzing Tweets (One Entity at a Time) | 125

• How many of Tim’s tweets contain at least one entity?

Like so many other situations involving a relatively unknown data source, one of the
first things you can do to learn more about it is to count things in it. In the case of tweet
data, counting the user mentions, hashtags, and URLs are great places to start. The
next section gets the ball rolling by leveraging some basic map/reduction functionality
to count tweet entities. Although tweet entities already exist in time line data, some of
the code examples in the rest of this chapter assume that you might have gotten the
data from elsewhere (search APIs, streaming APIs, etc.). Thus, we parse out the tweet
entities to maintain good and consistent form. Relying on Twitter to extract your tweet
entities for you is just a couple of code tweaks away.

What entities are in Tim’s tweets?

You can use CouchDB’s Futon to skim Tim’s user time line data one tweet at a time
by browsing http://localhost:5984/_utils, but you’ll quickly find yourself unsatisfied,
and you’ll want to get an overall summary of what Tim has been tweeting about, rather
than a huge list of mentions of lots of specific things. Some preliminary answers are
just a map/reduce job’s worth of effort away and can be easily computed with the script
shown in Example 5-4.

Example 5-4. Extracting entities from tweets and performing simple frequency analysis
(the_tweet__count_entities_in_tweets.py)

-*- coding: utf-8 -*-

import sys
import couchdb
from couchdb.design import ViewDefinition
from prettytable import PrettyTable

DB = sys.argv[1]

server = couchdb.Server('http://localhost:5984')
db = server[DB]

if len(sys.argv) > 2 and sys.argv[2].isdigit():
 FREQ_THRESHOLD = int(sys.argv[2])
else:
 FREQ_THRESHOLD = 3

Map entities in tweets to the docs that they appear in

def entityCountMapper(doc):
 if not doc.get('entities'):
 import twitter_text

 def getEntities(tweet):

 # Now extract various entities from it and build up a familiar structure

126 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

 extractor = twitter_text.Extractor(tweet['text'])

 # Note that the production Twitter API contains a few additional fields in
 # the entities hash that would require additional API calls to resolve

 entities = {}
 entities['user_mentions'] = []
 for um in extractor.extract_mentioned_screen_names_with_indices():
 entities['user_mentions'].append(um)

 entities['hashtags'] = []
 for ht in extractor.extract_hashtags_with_indices():

 # Massage field name to match production twitter api

 ht['text'] = ht['hashtag']
 del ht['hashtag']
 entities['hashtags'].append(ht)

 entities['urls'] = []
 for url in extractor.extract_urls_with_indices():
 entities['urls'].append(url)

 return entities

 doc['entities'] = getEntities(doc)

 if doc['entities'].get('user_mentions'):
 for user_mention in doc['entities']['user_mentions']:
 yield ('@' + user_mention['screen_name'].lower(), [doc['_id'], doc['id']])
 if doc['entities'].get('hashtags'):
 for hashtag in doc['entities']['hashtags']:
 yield ('#' + hashtag['text'], [doc['_id'], doc['id']])
 if doc['entities'].get('urls'):
 for url in doc['entities']['urls']:
 yield (url['url'], [doc['_id'], doc['id']])

def summingReducer(keys, values, rereduce):
 if rereduce:
 return sum(values)
 else:
 return len(values)

view = ViewDefinition('index', 'entity_count_by_doc', entityCountMapper,
 reduce_fun=summingReducer, language='python')
view.sync(db)

Print out a nicely formatted table. Sorting by value in the client is cheap and easy
if you're dealing with hundreds or low thousands of tweets

entities_freqs = sorted([(row.key, row.value) for row in
 db.view('index/entity_count_by_doc', group=True)],

Analyzing Tweets (One Entity at a Time) | 127

 key=lambda x: x[1], reverse=True)

fields = ['Entity', 'Count']
pt = PrettyTable(fields=fields)
[pt.set_field_align(f, 'l') for f in fields]

for (entity, freq) in entities_freqs:
 if freq > FREQ_THRESHOLD:
 pt.add_row([entity, freq])

pt.printt()

Note that while it could have been possible to build a less useful index to compute
frequency counts without using the rereduce parameter, constructing a more useful
index affords the opportunity to use rereduce, an important consideration for any
nontrivial map/reduce job.

A Note on rereduce
Example 5-4 is the first listing we’ve looked at that explicitly makes use of the
rereduce parameter, so it may be useful to explain exactly what’s going on there. Keep
in mind that in addition to reducing the output for some number of mappers (which
has necessarily been grouped by key), it’s also quite possible that the reducer may be
passed the output for some number of reducers to rereduce. In common functions such
as counting things and computing sums, it may not make a difference where the input
has come from, so long as a commutative operation such as addition keeps getting
repeatedly applied. In some cases, however, the difference between an initial reduction
and a rereduction does matter. This is where the rereduce parameter becomes useful.

For the summingReducer function shown in Example 5-4, consider the following sample
outputs from the mapper (the actual contents of the value portion of each tuple are of
no importance):

[["@foo", [x1, x2]], ["@foo", [x3, x4]], ["@bar", [x5, x6]],
 ["@foo", [x7, x8]], ("@bar", [x9, x10]]]

For simplicity, let’s suppose that each node in the underlying B-tree that stores these
tuples is only capable of housing two items at a time (the actual value as implemented
for CouchDB is well into the thousands). The reducer would conceptually operate on
the following input during the first pass, when rereduce is false. Again, recall that the
values are grouped by key:

len([[x1, x2], [x3, x4]]) == 2
summingReducer(["@foo", "@foo"], [[x1, x2], [x3, x4]], False)

len([[x7, x8]]) => 1
summingReducer(["@foo"], [[x7, x8]], False)

len([[x5, x6], [x9, x10]]) == 2
summingReducer(["@bar", "@bar"], [[x5, x6], [x9, x10]], False)

During the next pass through the reducer, when rereduce is True, because the reducer
is operating on already reduced output that has necessarily already been grouped by

128 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

key, no comparison related to key values is necessary. Given that the previous len
operation effectively did nothing more than count the number of occurrences of each
key (a tweet entity), additional passes through the reducer now need to sum these values
to compute a final tally, as is illustrated by the rereduce phase:

values from previously reducing @foo keys: sum([2, 1]) == 3
summingReducer(None, [2, 1], True)

values from previously reducing @bar keys: sum([2]) == 2
summingReducer(None, [2], True)

The big picture is that len was first used to count the number of times an entity appears,
as an intermediate step; then, in a final rereduction step, the sum function tallied those
intermediate results.

In short, the script uses a mapper to emit a tuple of the form (entity, [couchdb_id,
tweet_id]) for each document and then uses a reducer to count the number of times
each distinct entity appears. Given that you’re probably working with a relatively small
collection of items and that you’ve been introduced to some other mechanisms for
sorting in Chapter 3, you then simply sort the data on the client-side and apply a fre-
quency threshold. Example output with a threshold of 15 is shown in Table 5-1 but
also displayed as a chart in Figure 5-1 so that you have a feel for the underlying
distribution.

Table 5-1. Entities sorted by frequency from harvested tweets by @timoreilly

Entity Frequency

#gov20 140

@OReillyMedia 124

#Ebook 89

@timoreilly 77

#ebooks 55

@slashdot 45

@jamesoreilly 41

#w2e 40

@gnat 38

@n2vip 37

@monkchips 33

#w2s 31

@pahlkadot 30

@dalepd 28

#g2e 27

#ebook 25

Analyzing Tweets (One Entity at a Time) | 129

Entity Frequency

@ahier 24

#where20 22

@digiphile 21

@fredwilson 20

@brady 19

@mikeloukides 19

#pdf10 19

@nytimes 18

#fooeast 18

@andrewsavikas 17

@CodeforAmerica 16

@make 16

@pkedrosky 16

@carlmalamud 15

#make 15

#opengov 15

Figure 5-1. The frequency of entities that have been retweeted by @timoreilly for a sample of recent
tweets

130 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

So, what’s on Tim’s mind these days? It’s no surprise that a few of his favorite topics
appear in the list—for example, #gov20 with a whopping 140 mentions, dwarfing
everything else—but what may be even more intriguing is to consider some of the less
obvious user mentions, which likely indicate close relationships. In fact, it may be fair
to assume that Tim finds the users he mentions often interesting. You might even go
as far as to infer that he is influenced by or even trusts these other users. (Many an
interesting algorithm could be devised to try to determine these types of relationships,
with variable degrees of certainty.) Although computing raw counts as we’ve done in
this section is interesting, applying time-based filtering is another tempting possibility.
For example, we might gain useful insight by applying a time-based filter to the map/
reduce code in Example 5-4 so that we can calculate what Tim has been talking about
in the past N days as opposed to over his past ~3,200 tweets, which span a nontrivial
period of time. (Some Twitterers haven’t even come close to tweeting 3,200 times over
the course of several years.) It also wouldn’t be very difficult to plot out tweets on the
SIMILE Timeline that was introduced in “Visualizing Mail “Events” with SIMILE
Timeline” on page 77 and browse them to get a quick gist of what Tim has been tweeting
about most recently.

Do frequently appearing user entities imply friendship?

Example 4-4 provided a listing that demonstrated how to harvest a Twitterer’s friends
and followers, and used Redis to store the results. Assuming you’ve already fetched
Tim’s friends and followers with that listing, the results are readily available to you in
Redis, and it’s a fairly simple matter to compute how many of the N most frequently
tweeted user entities are also Tim’s friends. Example 5-5 illustrates the process of using
information we already have available in Redis from Chapter 4 to resolve screen names
from user IDs; Redis’ in-memory set operations are used to compute which of the most
frequently appearing user entities in Tim’s user time line are also his friends.

Example 5-5. Finding @mention tweet entities that are also friends
(the_tweet__how_many_user_entities_are_friends.py)

-*- coding: utf-8 -*-

import json
import redis
import couchdb
import sys
from twitter__util import getRedisIdByScreenName
from twitter__util import getRedisIdByUserId

SCREEN_NAME = sys.argv[1]
THRESHOLD = int(sys.argv[2])

Connect using default settings for localhost

r = redis.Redis()

Compute screen_names for friends

Analyzing Tweets (One Entity at a Time) | 131

friend_ids = r.smembers(getRedisIdByScreenName(SCREEN_NAME, 'friend_ids'))
friend_screen_names = []
for friend_id in friend_ids:
 try:
 friend_screen_names.append(json.loads(r.get(getRedisIdByUserId(friend_id,
 'info.json')))['screen_name'])
 except TypeError, e:
 continue # not locally available in Redis - look it up or skip it

Pull the list of (entity, frequency) tuples from CouchDB

server = couchdb.Server('http://localhost:5984')
db = server['tweets-user-timeline-' + SCREEN_NAME]

entities_freqs = sorted([(row.key, row.value) for row in
 db.view('index/entity_count_by_doc', group=True)],
 key=lambda x: x[1])

Keep only user entities with insufficient frequencies

user_entities = [(ef[0])[1:] for ef in entities_freqs if ef[0][0] == '@'
 and ef[1] >= THRESHOLD]

Do a set comparison

entities_who_are_friends = \
 set(user_entities).intersection(set(friend_screen_names))

entities_who_are_not_friends = \
 set(user_entities).difference(entities_who_are_friends)

print 'Number of user entities in tweets: %s' % (len(user_entities),)
print 'Number of user entities in tweets who are friends: %s' \
 % (len(entities_who_are_friends),)
for e in entities_who_are_friends:
 print '\t' + e
print 'Number of user entities in tweets who are not friends: %s' \
 % (len(entities_who_are_not_friends),)
for e in entities_who_are_not_friends:
 print '\t' + e

The output with a frequency threshold of 15 (shown in Example 5-6) is predictable,
yet it brings to light a couple of observations.

Example 5-6. Sample output from Example 5-5 displaying @mention tweet entities that are also
friends of @timoreilly

Number of user entities in tweets: 20
Number of user entities in tweets who are friends: 18
 ahier
 pkedrosky
 CodeforAmerica
 nytimes
 brady

132 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

 carlmalamud
 pahlkadot
 make
 jamesoreilly
 andrewsavikas
 gnat
 slashdot
 OReillyMedia
 dalepd
 mikeloukides
 monkchips
 fredwilson
 digiphile
Number of user entities in tweets who are not friends: 2
 n2vip
 timoreilly

All in all, there were 20 user entities who exceeded a frequency threshold of 15, and 18
of those turned out to be friends. Given that most of the people who appear in his tweets
are also his friends, it’s probably safe to say that there’s a strong trust relationship of
some kind between Tim and these individuals. Take a moment to compare this list to
the results from our exercises in “Constructing Friendship Graphs” on page 108. What
might be just as interesting, however, is noting that Tim himself appears as one of his
most frequently tweeted-about entities, as does one other individual, @n2vip. Looking
more closely at the context of the tweets involving @n2vip could be useful. Any theories
on how so many user mentions could be in someone’s tweet stream without them being
a friend? Let’s find out.

From the work you’ve done in Chapter 3, you already know how quick and easy it can
be to apply Lucene’s full-text indexing capabilities to a CouchDB database, and a min-
imal adaptation and extension of Example 3-12 is all that it takes to quickly hone in
on tweets mentioning @n2vip. Example 5-7 demonstrates how it’s done.

Example 5-7. Using couchdb-lucene to query tweet data (the_tweet__couchdb_lucene.py)

-*- coding: utf-8 -*-

import sys
import httplib
from urllib import quote
import json
import couchdb

DB = sys.argv[1]
QUERY = sys.argv[2]

The body of a JavaScript-based design document we'll create

dd = \
 {'fulltext': {'by_text': {'index': '''function(doc) {
 var ret=new Document();
 ret.add(doc.text);

Analyzing Tweets (One Entity at a Time) | 133

 return ret
 }'''}}}

try:
 server = couchdb.Server('http://localhost:5984')
 db = server[DB]
except couchdb.http.ResourceNotFound, e:
 print """CouchDB database '%s' not found.
Please check that the database exists and try again.""" % DB
 sys.exit(1)

try:
 conn = httplib.HTTPConnection('localhost', 5984)
 conn.request('GET', '/%s/_design/lucene' % (DB,))
 response = conn.getresponse()
finally:
 conn.close()

If the design document did not exist create one that'll be
identified as "_design/lucene". The equivalent of the following
in a terminal:
$ curl -X PUT http://localhost:5984/DB/_design/lucene -d @dd.json
if response.status == 404:
 try:
 conn = httplib.HTTPConnection('localhost', 5984)
 conn.request('PUT', '/%s/_design/lucene' % (DB,), json.dumps(dd))
 response = conn.getresponse()

 if response.status != 201:
 print 'Unable to create design document: %s %s' % (response.status,
 response.reason)
 sys.exit(1)
 finally:
 conn.close()

Querying the design document is nearly the same as usual except that you reference
couchdb-lucene's _fti HTTP handler
$ curl http://localhost:5984/DB/_fti/_design/lucene/by_subject?q=QUERY

try:
 conn.request('GET', '/%s/_fti/_design/lucene/by_text?q=%s' % (DB,
 quote(QUERY)))
 response = conn.getresponse()
 if response.status == 200:
 response_body = json.loads(response.read())
 else:
 print 'An error occurred fetching the response: %s %s' \
 % (response.status, response.reason)
 print 'Make sure your couchdb-lucene server is running.'
 sys.exit(1)
finally:
 conn.close()

doc_ids = [row['id'] for row in response_body['rows']]

134 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

pull the tweets from CouchDB and extract the text for display

tweets = [db.get(doc_id)['text'] for doc_id in doc_ids]
for tweet in tweets:
 print tweet
 print

Abbreviated output from the script, shown in Example 5-8, reveals that @n2vip appears
in so many of @timoreilly’s tweets because the two were engaging in Twitter
conversations.

Example 5-8. Sample output from Example 5-7

@n2vip Thanks. Great stuff. Passing on to the ebook team.
@n2vip I suggested it myself the other day before reading this note.
RT @n2vip Check this out if you really want to get your '#Churchill on', a ...
@n2vip Remember a revolution that began with a handful of farmers and tradesmen ...
@n2vip Good suggestion re having free sample chapters as ebooks, not just pdfs...
@n2vip I got those statistics by picking my name off the influencer list in ...
RT @n2vip An informative, non-partisan FAQ regarding Health Care Reform at ...
@n2vip Don't know anyone who is advocating that. FWIW, it was Rs who turned ...
@n2vip No, I don't. But a lot of the people arguing against renewables seem ...
@n2vip You've obviously never read an ebook on the iPhone. It's a great reading ...
@n2vip I wasn't suggesting that insurance was the strange world, just that you ...
@n2vip In high tech, there is competition from immigrant workers. Yet these two ...
@n2vip How right you are. We really don't do a good job teaching people ...
@n2vip The climategate stuff is indeed disturbing. But I still hold by what ...
@n2vip FWIW, I usually do follow links, so do include them if appropriate. Thanks.
@n2vip I don't mind substantive disagreement - e.g. with pointers to real info ...
@n2vip Totally agree that ownership can help. But you need to understand why ...
@n2vip Maybe not completely extinct, but certainly economically extinct. E.g. ...
@n2vip I wasn't aware that it was part of a partisan agenda. Too bad, because ...
RT @n2vip if only interesed in his 'Finest Hour' speech, try this - a ...
@n2vip They matter a lot. I was also struck by that story this morning. Oil ...
@n2vip I understand that. I guess "don't rob MYsocialized medicine to fund ...
RT @n2vip Electronic medical record efforts pushing private practice docs to ...
@n2vip I think cubesail can be deployed in 2 ways: to force quicker re-entry ...
RT @ggreenwald Wolf Blitzer has major epiphany on public opinion and HCR that ...

Splicing in the other half of the conversation

It appears that @n2vip’s many mentions are related to the fact that he engaged Tim in
at least a couple of discussions, and from a quick skim of the comments, the discussions
appear somewhat political in nature (which isn’t terribly surprising given the high
frequency of the #gov20 hashtag, noted in an exercise earlier in this chapter). An in-
teresting follow-on exercise is to augment Example 5-7 to extract the in_reply_to_sta
tus_id fields of the tweets and reassemble a more complete and readable version of the
conversations.

Analyzing Tweets (One Entity at a Time) | 135

One technique for reconstructing the thread that minimizes the number of API calls
required is to simply fetch all of @n2vip’s tweets that have tweet IDs greater than the
minimum tweet ID in the thread of interest, as opposed to collecting individual status
IDs one by one. Example 5-9 shows how this could be done.

Example 5-9. Reconstructing tweet discussion threads
(the_tweet__reassemble_discussion_thread.py)

-*- coding: utf-8 -*-

import sys
import httplib
from urllib import quote
import json
import couchdb
from twitter__login import login
from twitter__util import makeTwitterRequest

DB = sys.argv[1]
USER = sys.argv[2]

try:
 server = couchdb.Server('http://localhost:5984')
 db = server[DB]
except couchdb.http.ResourceNotFound, e:
 print >> sys.stderr, """CouchDB database '%s' not found.
Please check that the database exists and try again.""" % DB
 sys.exit(1)

query by term

try:
 conn = httplib.HTTPConnection('localhost', 5984)
 conn.request('GET', '/%s/_fti/_design/lucene/by_text?q=%s' % (DB,
 quote(USER)))
 response = conn.getresponse()
 if response.status == 200:
 response_body = json.loads(response.read())
 else:
 print >> sys.stderr, 'An error occurred fetching the response: %s %s' \
 % (response.status, response.reason)
 sys.exit(1)
finally:
 conn.close()

doc_ids = [row['id'] for row in response_body['rows']]

pull the tweets from CouchDB

tweets = [db.get(doc_id) for doc_id in doc_ids]

mine out the in_reply_to_status_id fields and fetch those tweets as a batch request

conversation = sorted([(tweet['_id'], int(tweet['in_reply_to_status_id']))

136 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

 for tweet in tweets if tweet['in_reply_to_status_id']
 is not None], key=lambda x: x[1])
min_conversation_id = min([int(i[1]) for i in conversation if i[1] is not None])
max_conversation_id = max([int(i[1]) for i in conversation if i[1] is not None])

Pull tweets from other user using user timeline API to minimize API expenses...

t = login()

reply_tweets = []
results = []
page = 1
while True:
 results = makeTwitterRequest(t,
 t.statuses.user_timeline,
 count=200,
 # Per <http://dev.twitter.com/doc/get/statuses/user_timeline>, some
 # caveats apply with the oldest id you can fetch using "since_id"
 since_id=min_conversation_id,
 max_id=max_conversation_id,
 skip_users='true',
 screen_name=USER,
 page=page)
 reply_tweets += results
 page += 1
 if len(results) == 0:
 break

During testing, it was observed that some tweets may not resolve or possibly
even come back with null id values -- possibly a temporary fluke. Workaround.
missing_tweets = []
for (doc_id, in_reply_to_id) in conversation:
 try:
 print [rt for rt in reply_tweets if rt['id'] == in_reply_to_id][0]['text']
 except Exception, e:
 print >> sys.stderr, 'Refetching <<tweet %s>>' % (in_reply_to_id,)
 results = makeTwitterRequest(t, t.statuses.show, id=in_reply_to_id)
 print results['text']

 # These tweets are already on hand
 print db.get(doc_id)['text']
 print

A lot of this code should look familiar by now. With the ability to authenticate into
Twitter’s API, store and retrieve data locally, and fetch remote data from Twitter, a lot
can be done with a minimal amount of “business logic.” Abbreviated sample output
from this script, presented in Example 5-10, follows and shows the flow of discussion
between @timoreilly and @n2vip.

Analyzing Tweets (One Entity at a Time) | 137

Example 5-10. Sample output from Example 5-9

Question: If all Ins. Co. suddenly became non-profit and approved ALL Dr. ...
@n2vip Don't know anyone who is advocating that. FWIW, it was Rs who turned ...

@timoreilly RT @ggreenwald Wolf Blitzer has major epiphany on public opinion ...
RT @ggreenwald Wolf Blitzer has major epiphany on public opinion and HCR that ...

@timoreilly RE: Cubesail - I don't get it, does the sail collect loose trash ...
@n2vip I think cubesail can be deployed in 2 ways: to force quicker re-entry ...

@timoreilly How are you finding % of your RT have links? What service did you ...
@n2vip I got those statistics by picking my name off the influencer list in ...

@timoreilly a more fleshed-out e-book 'teaser' chapter idea here: http://bit.ly/aML6eH
@n2vip Thanks. Great stuff. Passing on to the ebook team.

@timoreilly Tim, #HCR law cuts Medicare payments to fund, in part, broader ...
@n2vip I understand that. I guess "don't rob MYsocialized medicine to fund ...

@timoreilly RE: Auto Immune - a "revolution" that is measured by a hand-full ...
@n2vip Remember a revolution that began with a handful of farmers and tradesmen ...

Do oil spills in Africa not matter? http://bit.ly/bKqv01 @jaketapper @yunjid ...
@n2vip They matter a lot. I was also struck by that story this morning. Oil ...

Who Does Tim Retweet Most Often?
Given the (not so) old adage that a retweet is the highest form of a compliment, another
way of posing the question, “Who does Tim retweet most often?” is to ask, “Who does
Tim compliment most often?” Or, because it wouldn’t really make sense for him to
retweet content he did not find interesting, we might ask, “Who does Tim think is
talking about stuff that matters?” A reasonable hypothesis is that many of the user
entities that appear in Tim’s public time line may be references to the authors of tweets
that Tim is retweeting. Let’s explore this idea further and calculate how many of Tim’s
tweets are retweets and, of those retweets, which tweet author gets retweeted the most
often. There are a number of tweet resource API methods available for collecting re-
tweets, but given that we already have more than a few thousand tweets on hand from
an earlier exercise, let’s instead analyze those as a means of getting the maximum value
out of our API calls.

There are a couple of basic patterns for a retweet:

• RT @user Mary had a little lamb

• Mary had a little lamb (via @user)

In either case, the meaning is simple: someone is giving @user credit for a particular bit
of information. Example 5-11 provides a sample program that extracts the number of
times Tim has retweeted other Twitterers by applying a regular expression matcher as
part of a simple map/reduce routine.

138 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

Be advised that Twitter’s API has been evolving quickly over the course
of time this book was being written. Example 5-11 counts retweets by
extracting clues such as “RT” from the tweet text itself. By the time
you’re reading this, there may very well be a more efficient way to com-
pute the number of times one user has retweeted another user for some
duration.

Example 5-11. Counting the number of times Twitterers have been retweeted by someone
(the_tweet__count_retweets_of_other_users.py)

-*- coding: utf-8 -*-

import sys
import couchdb
from couchdb.design import ViewDefinition
from prettytable import PrettyTable

DB = sys.argv[1]

try:
 server = couchdb.Server('http://localhost:5984')
 db = server[DB]
except couchdb.http.ResourceNotFound, e:
 print """CouchDB database '%s' not found.
Please check that the database exists and try again.""" % DB
 sys.exit(1)

if len(sys.argv) > 2 and sys.argv[2].isdigit():
 FREQ_THRESHOLD = int(sys.argv[2])
else:
 FREQ_THRESHOLD = 3

Map entities in tweets to the docs that they appear in

def entityCountMapper(doc):
 if doc.get('text'):
 import re
 m = re.search(r"(RT|via)((?:\b\W*@\w+)+)", doc['text'])
 if m:
 entities = m.groups()[1].split()
 for entity in entities:
 yield (entity.lower(), [doc['_id'], doc['id']])
 else:
 yield ('@', [doc['_id'], doc['id']])

def summingReducer(keys, values, rereduce):
 if rereduce:
 return sum(values)
 else:
 return len(values)

view = ViewDefinition('index', 'retweet_entity_count_by_doc', entityCountMapper,

Analyzing Tweets (One Entity at a Time) | 139

 reduce_fun=summingReducer, language='python')
view.sync(db)

Sorting by value in the client is cheap and easy
if you're dealing with hundreds or low thousands of tweets

entities_freqs = sorted([(row.key, row.value) for row in
 db.view('index/retweet_entity_count_by_doc',
 group=True)], key=lambda x: x[1], reverse=True)

fields = ['Entity', 'Count']
pt = PrettyTable(fields=fields)
[pt.set_field_align(f, 'l') for f in fields]

for (entity, freq) in entities_freqs:
 if freq > FREQ_THRESHOLD and entity != '@':
 pt.add_row([entity, freq])

pt.printt()

If you think the results will look almost identical to the raw entity counts computed
earlier in Table 5-1, you’ll be somewhat surprised. The listing in Table 5-2 also uses a
threshold of 15, to juxtapose the difference.

Table 5-2. Most frequent entities appearing in retweets by @timoreilly; additional columns to
illustrate normalization of retweet counts by @timoreilly

Entity Number of times @user
retweeted by @timoreilly

Total tweets ever by @user Normalized retweet score

@monkchips 30 33215 0.000903206

@ahier 18 14849 0.001212203

@slashdot 41 22081 0.0018568

@gnat 28 11322 0.002473061

@mikeloukides 15 2926 0.005126452

@pahlkadot 16 3109 0.005146349

@oreillymedia 97 6623 0.014645931

@jamesoreilly 34 4439 0.007659383

@dalepd 16 1589 0.010069226

So, who does Tim retweet/compliment the most? Well, not so surprisingly, his com-
pany and folks closely associated with his company compose the bulk of the list, with
@oreillymedia coming in at the top of the pack. A visual inspection of retweet tallies
and raw entity tallies shows an obvious correlation. Keep in mind, however, that the
results shown in the “Number of times @user retweeted by @timoreilly” column in
Table 5-2 are not normalized. For example, @dalepd was retweeted far fewer times
than @oreillymedia, but a brief inspection of the statuses_count field that’s embedded
in the user objects in tweets (among other places in the API results) reveals that

140 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

@dalepd tweets far less frequently than @oreillymedia. In fact, if you normalize the
data by dividing the number of retweets by the total number of tweets for each user,
@dalepd just barely ranks second to @oreillymedia—meaning that Tim retweets more
of his tweets than those of any other user in the table except for @oreillymedia, even
though it doesn’t necessarily appear that way if you sort by raw retweet frequency.
Figure 5-2 illustrates this analysis as a bubble chart. Additional tinkering to determine
why some folks aren’t retweeted as frequently as they are mentioned would also be
interesting.

Figure 5-2. The y-axis of this bubble chart depicts the raw number of times a user has been retweeted;
the area of the bubble represents a normalized score for how many times the user has been retweeted
compared to the total number of times he has ever tweeted

Given that it’s not too difficult to determine who Tim retweets most often, what about
asking the question the other way: who retweets Tim most often? Answering this ques-
tion in aggregate without a focused target population would be a bit difficult, if not
impossible given the Twitter API limitations, as Tim has ~1,500,000 followers. How-
ever, it’s a bit more tractable if you narrow it down to a reasonably small target popu-
lation. The next section investigates some options.

What’s Tim’s Influence?
Asking how many of your tweets get retweeted is really just another way of measuring
your own influence. If you tweet a lot and nobody retweets you, it’s safe to say that
your influence is pretty weak—at least as a Twitterer. In fact, it would be somewhat of

Analyzing Tweets (One Entity at a Time) | 141

a paradox to find yourself having the good fortune of many followers but not many
retweets, because you generally get followers and retweets for the very same reason:
you’re interesting and influential!

One base metric that’s quite simple and inexpensive to calculate is the ratio of tweets
to retweets. A ratio of 1 would mean that every single tweet you’ve authored was re-
tweeted and indicate that your influence is strong—potentially having second- and
third-level effects that reach millions of unique users (literally)—while values closer to
0 show weaker influence. Of course, given the nature of Twitter, it’s highly unlikely
than any human user would have a tweet-to-retweet ratio of 1, if for no other reason
than the mechanics of conversation (@replies) would drive the ratio downward. Twit-
ter exposes the statuses/retweets_of_me resource, which provides the authenticating
user with insight on which of her tweets have been retweeted. However, we don’t have
access to that API to analyze Tim’s retweets, so we need to look for another outlet.

Example 5-12 takes advantage of the retweet_count field in a tweet to compute the
number of tweets that have been retweeted a given number of times as part of what
should now seem like a trivial map/reduce combination. Sample output formatted into
a chart follows the example.

Example 5-12. Finding the tweets that have been retweeted most often
(the_tweet__count_retweets_by_others.py)

-*- coding: utf-8 -*-

import sys
import couchdb
from couchdb.design import ViewDefinition
from prettytable import PrettyTable
from twitter__util import pp

DB = sys.argv[1]

try:
 server = couchdb.Server('http://localhost:5984')
 db = server[DB]
except couchdb.http.ResourceNotFound, e:
 print """CouchDB database '%s' not found.
Please check that the database exists and try again.""" % DB
 sys.exit(1)

Map entities in tweets to the docs that they appear in

def retweetCountMapper(doc):
 if doc.get('id') and doc.get('text'):
 yield (doc['retweet_count'], 1)

def summingReducer(keys, values, rereduce):
 return sum(values)

view = ViewDefinition('index', 'retweets_by_id', retweetCountMapper,
 reduce_fun=summingReducer, language='python')

142 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

view.sync(db)

fields = ['Num Tweets', 'Retweet Count']
pt = PrettyTable(fields=fields)
[pt.set_field_align(f, 'l') for f in fields]

retweet_total, num_tweets, num_zero_retweets = 0, 0, 0
for (k,v) in sorted([(row.key, row.value) for row in
 db.view('index/retweets_by_id', group=True)
 if row.key is not None],
 key=lambda x: x[0], reverse=True):
 pt.add_row([k, v])

 if k == "100+":
 retweet_total += 100*v
 elif k == 0:
 num_zero_retweets += v
 else:
 retweet_total += k*v

 num_tweets += v

pt.printt()

print '\n%s of %s authored tweets were retweeted at least once' % \
 (pp(num_tweets - num_zero_retweets), pp(num_tweets),)
print '\t(%s tweet/retweet ratio)\n' % \
 (1.0*(num_tweets - num_zero_retweets)/num_tweets,)

print 'Those %s authored tweets generated %s retweets' % (pp(num_tweets), pp(retweet_total),)

Figure 5-3 displays sample results from Example 5-12 that are formatted into a more
compact chart that uses a logarithmic scale to squash the y-axis. Values along the x-
axis correspond to the number of tweets with a given retweet value denoted by the y-
axis. The total “area under the curve” is just over 3,000—the total number of tweets
being analyzed. For example, just over 533 of Tim’s tweets weren’t retweeted at all as
denoted by the far left column, 50 of his tweets were retweeted 50 times, and over 60
of his tweets were retweeted over 100 times§ as denoted by the far right column.

The distribution isn’t too surprising in that it generally trends according to the power
law and that there are a fairly high number of tweets that went viral and were retweeted
what could have been many hundreds of times. The high-level takeaways are that of
over 3,000 total tweets, 2,536 of them were retweeted at least one time (a ratio of about
0.80) and generated over 50,000 retweets in all (a factor about 16).

To say the very least, the numbers confirm Tim’s status as an influential information
maven.

§ Note that as of late December 2010, the retweet_count field maxes out at 100. For this particular batch of
data, there were 2 tweets that had been retweeted exactly 100 times, and 59 tweets that were retweeted "100+".

Analyzing Tweets (One Entity at a Time) | 143

How Many of Tim’s Tweets Contain Hashtags?
It seems a reasonable theory that tweets that contain hashtag entities are inherently
more valuable than ones that don’t because someone has deliberately gone to the trou-
ble of embedding aggregatable information into those tweets, which essentially trans-
forms them into semi-structured information. For example, it seems reasonable to
assume that someone who averages 2+ hashtags per tweet is very interested in bridging
knowledge and aware of the power of information, whereas someone who averages 0.1
hashtags per tweet probably is less so.

What’s a Folksonomy?
A fundamental aspect of human intelligence is the desire to classify things and derive
a hierarchy in which each element “belongs to” or is a “child” of a parent element one
level higher in the hierarchy. Leaving aside philosophical debates about the difference
between a taxonomy and an ontology, a taxonomy is essentially a hierarchical structure
that classifies elements into parent/child bins. The term folksonomy was coined around
2004 as a means of describing the universe of collaborative tagging and social indexing
efforts that emerge in various ecosystems of the Web, and it’s a play on words in the
sense that it blends “folk” and “taxonomy.” So, in essence, a folksonomy is just a fancy
way of describing the decentralized universe of tags that emerges as a mechanism of
collective intelligence when you allow people to classify content with labels.

Figure 5-3. Sample results from Example 5-12

144 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

Computing the average number of hashtags per tweet should be a cake-walk for you
by now. We’ll recycle some code and compute the total number of hashtags in one
map/reduce phase, compute the total number of tweets in another map/reduce phase,
and then divide the two numbers, as illustrated in Example 5-13.

Example 5-13. Counting hashtag entities in tweets (the_tweet__avg_hashtags_per_tweet.py)

-*- coding: utf-8 -*-

import sys
import couchdb
from couchdb.design import ViewDefinition

DB = sys.argv[1]

try:
 server = couchdb.Server('http://localhost:5984')
 db = server[DB]
except couchdb.http.ResourceNotFound, e:
 print """CouchDB database '%s' not found.
Please check that the database exists and try again.""" % DB
 sys.exit(1)

Emit the number of hashtags in a document

def entityCountMapper(doc):
 if not doc.get('entities'):
 import twitter_text

 def getEntities(tweet):

 # Now extract various entities from it and build up a familiar structure

 extractor = twitter_text.Extractor(tweet['text'])

 # Note that the production Twitter API contains a few additional fields in
 # the entities hash that would require additional API calls to resolve

 entities = {}
 entities['user_mentions'] = []
 for um in extractor.extract_mentioned_screen_names_with_indices():
 entities['user_mentions'].append(um)

 entities['hashtags'] = []
 for ht in extractor.extract_hashtags_with_indices():

 # Massage field name to match production twitter api

 ht['text'] = ht['hashtag']
 del ht['hashtag']
 entities['hashtags'].append(ht)

 entities['urls'] = []
 for url in extractor.extract_urls_with_indices():
 entities['urls'].append(url)

Analyzing Tweets (One Entity at a Time) | 145

 return entities

 doc['entities'] = getEntities(doc)

 if doc['entities'].get('hashtags'):
 yield (None, len(doc['entities']['hashtags']))

def summingReducer(keys, values, rereduce):
 return sum(values)

view = ViewDefinition('index', 'count_hashtags', entityCountMapper,
 reduce_fun=summingReducer, language='python')
view.sync(db)

num_hashtags = [row for row in db.view('index/count_hashtags')][0].value

Now, count the total number of tweets that aren't direct replies

def entityCountMapper(doc):
 if doc.get('text')[0] == '@':
 yield (None, 0)
 else:
 yield (None, 1)

view = ViewDefinition('index', 'num_docs', entityCountMapper,
 reduce_fun=summingReducer, language='python')
view.sync(db)

num_docs = [row for row in db.view('index/num_docs')][0].value

Finally, compute the average

print 'Avg number of hashtags per tweet for %s: %s' % \
 (DB.split('-')[-1], 1.0 * num_hashtags / num_docs,)

For a recent batch we fetched earlier, running this script reveals that Tim averages about
0.5 hashtags per tweet that is not a direct reply to someone. In other words, he includes
a hashtag in about half of his tweets. For anyone who regularly tweets, including a
hashtag that much of the time provides a substantial contribution to the overall Twitter
search index and the ever-evolving folksonomy. As a follow-up exercise, it could be
interesting to compute the average number of hyperlink entities per tweet, or even go
so far as to follow the links and try to discover new information about Tim’s interests
by inspecting the title or content of the linked web pages. (In the chapters ahead, es-
pecially Chapters 7 and 8, we’ll learn more about text mining, an essential skill for
analyzing web pages.)

146 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

Juxtaposing Latent Social Networks (or #JustinBieber Versus
#TeaParty)
One of the most fascinating aspects of data mining is that it affords you the ability to
discover new knowledge from existing information. There really is something to be said
for the old adage that “knowledge is power,” and it’s especially true in an age where
the amount of information available is steadily growing with no indication of decline.
As an interesting exercise, let’s see what we can discover about some of the latent social
networks that exist in the sea of Twitter data. The basic approach we’ll take is to collect
some focused data on two or more topics in a specific way by searching on a particular
hashtag, and then apply some of the same metrics we coded up in the previous section
(where we analyzed Tim’s tweets) to get a feel for the similarity between the networks.

Since there’s no such thing as a “stupid question,” let’s move forward in the spirit of
famed economist Steven D. Levitt‖ and ask the question, “What do #TeaParty and
#JustinBieber have in common?”#

Example 5-14 provides a simple mechanism for collecting approximately the most re-
cent 1,500 tweets (the maximum currently returned by the search API) on a particular
topic and storing them away in CouchDB. Like other listings you’ve seen earlier in this
chapter, it includes simple map/reduce logic to incrementally update the tweets in the
event that you’d like to run it over a longer period of time to collect a larger batch of
data than the search API can give you in a short duration. You might want to investigate
the streaming API for this type of task.

Example 5-14. Harvesting tweets for a given query (the_tweet__search.py)

-*- coding: utf-8 -*-

import sys
import twitter
import couchdb
from couchdb.design import ViewDefinition
from twitter__util import makeTwitterRequest

SEARCH_TERM = sys.argv[1]
MAX_PAGES = 15

KW = {
 'domain': 'search.twitter.com',
 'count': 200,
 'rpp': 100,

‖ Steven D. Levitt is the co-author of Freakonomics: A Rogue Economist Explores the Hidden Side of
Everything (Harper), a book that systematically uses data to answer seemingly radical questions such as,
“What do school teachers and sumo wrestlers have in common?”

#This question was partly inspired by the interesting Radar post, “Data science democratized”, which mentions
a presentation that investigated the same question.

Juxtaposing Latent Social Networks (or #JustinBieber Versus #TeaParty) | 147

 'q': SEARCH_TERM,
 }

server = couchdb.Server('http://localhost:5984')
DB = 'search-%s' % (SEARCH_TERM.lower().replace('#', '').replace('@', ''),)

try:
 db = server.create(DB)
except couchdb.http.PreconditionFailed, e:

 # already exists, so append to it, and be mindful of duplicates

 db = server[DB]

t = twitter.Twitter(domain='search.twitter.com')

for page in range(1, 16):
 KW['page'] = page
 tweets = makeTwitterRequest(t, t.search, **KW)
 db.update(tweets['results'], all_or_nothing=True)
 if len(tweets['results']) == 0:
 break
 print 'Fetched %i tweets' % len(tweets['results'])

The following sections are based on approximately 3,000 tweets per topic and assume
that you’ve run the script to collect data on #TeaParty and #JustinBieber (or any other
topics that interest you).

Depending on your terminal preferences, you may need to escape cer-
tain characters (such as the hash symbol) because of the way they might
be interpreted by your shell. For example, in Bash, you’d need to escape
a hashtag query for #TeaParty as \#TeaParty to ensure that the shell
interprets the hash symbol as part of the query term, instead of as the
beginning of a comment.

What Entities Co-Occur Most Often with #JustinBieber and #TeaParty
Tweets?
One of the simplest yet probably most effective ways to characterize two different
crowds is to examine the entities that appear in an aggregate pool of tweets. In addition
to giving you a good idea of the other topics that each crowd is talking about, you can
compare the entities that do co-occur to arrive at a very rudimentary similarity metric.
Example 5-4 already provides the logic we need to perform a first pass at entity analysis.
Assuming you’ve run search queries for #JustinBieber and #TeaParty, you should have
two CouchDB databases called “search-justinbieber” and “search-teaparty” that you
can pass in to produce your own results. Sample results for each hashtag with an entity
frequency greater than 20 follow in Tables 5-3 and 5-4; Figure 5-4 displays a chart
conveying the underlying frequency distributions for these tables. Because the y-axis

148 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

contains such extremes, it is adjusted to be a logarithmic scale, which makes the y values
easier to read.

Table 5-3. Most frequent entities appearing in tweets containing #TeaParty

Entity Frequency

#teaparty 2834

#tcot 2426

#p2 911

#tlot 781

#gop 739

#ocra 649

#sgp 567

#twisters 269

#dnc 175

#tpp 170

#GOP 150

#iamthemob 123

#ucot 120

#libertarian 112

#obama 112

#vote2010 109

#TeaParty 106

#hhrs 104

#politics 100

#immigration 97

#cspj 96

#acon 91

#dems 82

#palin 79

#topprog 78

#Obama 74

#tweetcongress 72

#jcot 71

#Teaparty 62

#rs 60

#oilspill 59

#news 58

Juxtaposing Latent Social Networks (or #JustinBieber Versus #TeaParty) | 149

Entity Frequency

#glennbeck 54

#FF 47

#liberty 47

@welshman007 45

#spwbt 44

#TCOT 43

http://tinyurl.com/24h36zq 43

#rnc 42

#military 40

#palin12 40

@Drudge_Report 39

@ALIPAC 35

#majority 35

#NoAmnesty 35

#patriottweets 35

@ResistTyranny 34

#tsot 34

http://tinyurl.com/386k5hh 31

#conservative 30

#AZ 29

#TopProg 29

@JIDF 28

@STOPOBAMA2012 28

@TheFlaCracker 28

#palin2012 28

@thenewdeal 27

#AFIRE 27

#Dems 27

#asamom 26

#GOPDeficit 25

#wethepeople 25

@andilinks 24

@RonPaulNews 24

#ampats 24

#cnn 24

150 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

Entity Frequency

#jews 24

@First_Patriots 23

#patriot 23

#pjtv 23

@Liliaep 22

#nvsen 22

@BrnEyeSuss 21

@crispix49 21

@koopersmith 21

@Kriskxx 21

#Kagan 21

@blogging_tories 20

#cdnpoli 20

#fail 20

#nra 20

#roft 20

Table 5-4. Most frequent entities appearing in tweets containing #JustinBieber

Entity Frequency

#justinbieber 1613

#JustinBieber 1379

@lojadoaltivo 354

@ProSieben 258

#JUSTINBIEBER 191

#Proform 191

http://migre.me/TJwj 191

#Justinbieber 107

#nowplaying 104

@justinbieber 99

#music 88

#tickets 80

@_Yassi_ 78

#musicmonday 78

#video 78

#Dschungel 74

Juxtaposing Latent Social Networks (or #JustinBieber Versus #TeaParty) | 151

Entity Frequency

#Celebrity 42

#beliebers 38

#BieberFact 38

@JustBieberFact 32

@TinselTownDirt 32

@rheinzeitung 28

#WTF 28

http://tinyurl.com/343kax4 28

#Telezwerge 26

#Escutando 22

#justinBieber 22

#Restart 22

#TT 22

http://bit.ly/aARD4t 21

http://bit.ly/b2Kc1L 21

#bieberblast 20

#Eclipse 20

#somebodytolove 20

What’s immediately obvious is that the #TeaParty tweets seem to have a lot more area
“under the curve” and a much longer tail* (if you can even call it a tail) than the #Jus-
tinBieber tweets. Thus, at a glance, it would seem that the average number of hashtags
for #TeaParty tweets would be higher than for #JustinBieber tweets. The next section
investigates this assumption, but before we move on, let’s make a few more observa-
tions about these results. A cursory qualitative assessment of the results seems to in-
dicate that the information encoded into the entities themselves is richer for #TeaParty.
For example, in #TeaParty entities, we see topics such as #oilspill, #Obama, #palin,
#libertarian, and @Drudge_Report, among others. In contrast, many of the most fre-
quently occurring #JustinBieber entities are simply variations of #JustinBieber, with
the rest of the hashtags being somewhat scattered and unfocused. Keep in mind, how-
ever, that this isn’t all that unexpected, given that #TeaParty is a very political topic
whereas #JustinBieber is associated with pop culture and entertainment.

Some other observations are that a couple of user entities (@lojadoaltivo and @Pro-
Sieben) appear in the top few results—higher than the “official” @justinbieber account

* A “long tail” or “heavy tail” refers to a feature of statistical distributions in which a significant portion (usually
50 percent or more) of the area under the curve exists within its tail. This concept is revisited as part of a brief
overview of Zipf’s law in “Data Hacking with NLTK” on page 205.

152 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

itself—and that many of the entities that co-occur most often with #JustinBieber are
non-English words or user entities, often associated with the entertainment industry.

Having briefly scratched the surface of a qualitative assessment, let’s now return to the
question of whether there are definitively more hashtags per tweet for #TeaParty than
#JustinBieber.

On Average, Do #JustinBieber or #TeaParty Tweets Have More Hashtags?
Example 5-13 provides a working implementation for counting the average number of
hashtags per tweet and can be readily applied to the search-justinbieber and search-
teaparty databases without any additional work required.

Tallying the results for the two databases reveals that #JustinBieber tweets average
around 1.95 hashtags per tweet, while #TeaParty tweets have around 5.15 hashtags
per tweet. That’s approximately 2.5 times more hashtags for #TeaParty tweets than
#JustinBieber tweets. Although this isn’t necessarily the most surprising find in the
world, having firm data points on which to base further explorations or to back up
conjectures is helpful: they are quantifiable results that can be tracked over time, or
shared and reassessed by others.

Although the difference in this case is striking, keep in mind that the data collected is
whatever Twitter handed us back as the most recent ~3,000 tweets for each topic via

Figure 5-4. Distribution of entities co-occurring with #JustinBieber and #TeaParty

Juxtaposing Latent Social Networks (or #JustinBieber Versus #TeaParty) | 153

the search API. It isn’t necessarily statistically significant, even though it is probably a
very good indicator and very well may be so. Whether they realize it or not, #TeaParty
Twitterers are big believers in folksonomies: they clearly have a vested interest in en-
suring that their content is easily accessible and cross-referenced via search APIs and
data hackers such as ourselves.

Which Gets Retweeted More Often: #JustinBieber or #TeaParty?
Earlier in this chapter, we made the reasonable conjecture that tweets that are retweeted
with high frequency are likely to be more influential and more informative or editorial
in nature than ones that are not. Tweets such as “Eating a pretzel” and “Aliens have
just landed on the White House front lawn; we are all going to die! #fail #apocalypse”
being extreme examples of content that is fairly unlikely and likely to be retweeted,
respectively. How does #TeaParty compare to #JustinBieber for retweets? Analyzing
@mentions from the working set of search results again produces interesting results.
Truncated results showing which users have retweeted #TeaParty and #JustinBieber
most often using a threshold with a frequency parameter of 10 appear in Tables 5-5
and 5-6.

Table 5-5. Most frequent retweeters of #TeaParty

Entity Frequency

@teapartyleader 10

@dhrxsol1234 11

@HCReminder 11

@ObamaBallBuster 11

@spitfiremurphy 11

@GregWHoward 12

@BrnEyeSuss 13

@Calroofer 13

@grammy620 13

@Herfarm 14

@andilinks 16

@c4Liberty 16

@FloridaPundit 16

@tlw3 16

@Kriskxx 18

@crispix49 19

@JIDF 19

@libertyideals 19

154 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

Entity Frequency

@blogging_tories 20

@Liliaep 21

@STOPOBAMA2012 22

@First_Patriots 23

@RonPaulNews 23

@TheFlaCracker 24

@thenewdeal 25

@ResistTyranny 29

@ALIPAC 32

@Drudge_Report 38

@welshman007 39

Table 5-6. Most frequent retweeters of #JustinBieber

Entity Frequency

@justinbieber 14

@JesusBeebs 16

@LeePhilipEvans 16

@JustBieberFact 32

@TinselTownDirt 32

@ProSieben 122

@lojadoaltivo 189

If you do some back of the envelope analysis by running Example 5-4 on the ~3,000
tweets for each topic, you’ll discover that about 1,335 of the #TeaParty tweets are
retweets, while only about 763 of the #JustinBieber tweets are retweets. That’s prac-
tically twice as many retweets for #TeaParty than #JustinBieber. You’ll also observe
that #TeaParty has a much longer tail, checking in with over 400 total retweets against
#JustinBieber’s 131 retweets. Regardless of statistical rigor, intuitively, those are prob-
ably pretty relevant indicators that size up the different interest groups in meaningful
ways. It would seem that #TeaParty folks more consistently retweet content than
#JustinBieber folks; however, of the #JustinBieber folks who do retweet content, there
are clearly a few outliers who retweet much more frequently than others. Figure 5-5
displays a simple chart of the values from Tables 5-5 and 5-6. As with Figure 5-4, the
y-axis is a log scale, which makes the chart a little more readable by squashing the
frequency values to require less vertical space.

Juxtaposing Latent Social Networks (or #JustinBieber Versus #TeaParty) | 155

How Much Overlap Exists Between the Entities of #TeaParty and
#JustinBieber Tweets?
A final looming question that might be keeping you up at night is how much overlap
exists between the entities parsed out of the #TeaParty and #JustinBieber tweets. Bor-
rowing from some of the ideas in Chapter 4, we’re essentially asking for the logical
intersection of the two sets of entities. Although we could certainly compute this by
taking the time to adapt existing Python code, it might be even easier to just capture
the results of the scripts we already have on hand into two files and pass those filenames
as parameters into a disposable script that provides a general-purpose facility for com-
puting the intersection of any line-delimited file. In addition to getting the job done,
this approach also leaves you with artifacts that you can casually peruse and readily
share with others. Assuming you are working in a *nix shell with the script count-
entities-in-tweets.py, one approach for capturing the entities from the #TeaParty and
#JustinBieber output of Example 5-4 and storing them in sorted order follows:

#!/bin/bash

mkdir -p out
for db in teaparty justinbieber; do
 python the_tweet__count_entities_in_tweets.py search-$db 0 | \
 tail +3 | awk '{print $2}' | sort > out/$db.entities
done

After you’ve run this script, you can pass the two filenames into the general-purpose
Python program to compute the output, as shown in Example 5-15.

Figure 5-5. Distribution of users who have retweeted #JustinBieber and #TeaParty

156 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

Example 5-15. Computing the set intersection of lines in files
(the_tweet__compute_intersection_of_lines_in_files.py)

-*- coding: utf-8 -*-

"""
Read in 2 or more files and compute the logical intersection of the lines in them
"""

import sys

data = {}
for i in range(1, len(sys.argv)):
 data[sys.argv[i]] = set(open(sys.argv[i]).readlines())

intersection = set()
keys = data.keys()
for k in range(len(keys) - 1):
 intersection = data[keys[k]].intersection(data[keys[k - 1]])

msg = 'Common items shared amongst %s:' % ', '.join(keys).strip()
print msg
print '-' * len(msg)
for i in intersection:
 print i.strip()

The entities shared between #JustinBieber and #TeaParty are somewhat predictable,
yet interesting. Example 5-16 lists the results from our sample.

Example 5-16. Sample results from Example 5-15

Common items shared amongst teaparty.entities, justinbieber.entities:

#lol
#jesus
#worldcup
#teaparty
#AZ
#milk
#ff
#guns
#WorldCup
#bp
#News
#dancing
#music
#glennbeck
http://www.linkati.com/q/index
@addthis
#nowplaying
#news
#WTF
#fail
#toomanypeople

Juxtaposing Latent Social Networks (or #JustinBieber Versus #TeaParty) | 157

#oilspill
#catholic

It shouldn’t be surprising that #WorldCup, #worldcup, and #oilspill are in the results,
given that they’re pretty popular topics; however, having #teaparty, #glennbeck, #je-
sus, and #catholic show up on the list of shared hashtags might be somewhat of a
surprise if you’re not that familiar with the TeaParty movement. Further analysis could
very easily determine exactly how strong the correlations are between the two searches
by accounting for how frequently certain hashtags appear in each search. One thing
that’s immediately clear from these results is that none of these common entities
appears in the top 20 most frequent entities associated with #JustinBieber, so that’s
already an indicator that they’re out in the tail of the frequency distribution for #Jus-
tinBieber mentions. (And yes, having #WTF and #fail show up on the list at all, es-
pecially as a common thread between two diverse groups, is sort of funny. Experiencing
frustration is, unfortunately, a common thread of humanity.) If you want to dig deeper,
as a further exercise you might reuse Example 5-7 to enable full-text indexing on the
tweets in order to search by keyword.

Visualizing Tons of Tweets
There are more interesting ways to visualize Twitter data than we could possibly cover
in this short chapter, but that won’t stop us from working through a couple of exercises
with some of the more obvious approaches that provide a good foundation. In partic-
ular, we’ll look at loading tweet entities into tag clouds and visualizing “connections”
among users with graphs.

Visualizing Tweets with Tricked-Out Tag Clouds
Tag clouds are among the most obvious choices for visualizing the extracted entities
from tweets. There are a number of interesting tag cloud widgets that you can find on
the Web to do all of the hard work, and they all take the same input—essentially, a
frequency distribution like the ones we’ve been computing throughout this chapter.
But why visualize data with an ordinary tag cloud when you could use a highly cus-
tomizable Flash-based rotating tag cloud? There just so happens to be a quite popular
open source rotating tag cloud called WP-Cumulus that puts on a nice show. All that’s
needed to put it to work is to produce the simple input format that it expects and feed
that input format to a template containing the standard HTML boilerplate.

Example 5-17 is a trivial adaptation of Example 5-4 that illustrates a routine emitting
a simple JSON structure (a list of [term, URL, frequency] tuples) that can be fed into
an HTML template for WP-Cumulus. We’ll pass in empty strings for the URL portion
of those tuples, but you could use your imagination and hyperlink to a simple web
service that displays a list of tweets containing the entities. (Recall that Example 5-7
provides just about everything you’d need to wire this up by using couchdb-lucene to

158 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

perform a full-text search on tweets stored in CouchDB.) Another option might be to
write a web service and link to a URL that provides any tweet containing the specified
entity.

Example 5-17. Generating the data for an interactive tag cloud using WP-Cumulus
(the_tweet__tweet_tagcloud_code.py)

-*- coding: utf-8 -*-

import os
import sys
import webbrowser
import json
from cgi import escape
from math import log
import couchdb
from couchdb.design import ViewDefinition

DB = sys.argv[1]
MIN_FREQUENCY = int(sys.argv[2])

HTML_TEMPLATE = '../web_code/wp_cumulus/tagcloud_template.html'
MIN_FONT_SIZE = 3
MAX_FONT_SIZE = 20

server = couchdb.Server('http://localhost:5984')
db = server[DB]

Map entities in tweets to the docs that they appear in

def entityCountMapper(doc):
 if not doc.get('entities'):
 import twitter_text

 def getEntities(tweet):

 # Now extract various entities from it and build up a familiar structure

 extractor = twitter_text.Extractor(tweet['text'])

 # Note that the production Twitter API contains a few additional fields in
 # the entities hash that would require additional API calls to resolve

 entities = {}
 entities['user_mentions'] = []
 for um in extractor.extract_mentioned_screen_names_with_indices():
 entities['user_mentions'].append(um)

 entities['hashtags'] = []
 for ht in extractor.extract_hashtags_with_indices():

 # massage field name to match production twitter api

 ht['text'] = ht['hashtag']

Visualizing Tons of Tweets | 159

 del ht['hashtag']
 entities['hashtags'].append(ht)

 entities['urls'] = []
 for url in extractor.extract_urls_with_indices():
 entities['urls'].append(url)

 return entities

 doc['entities'] = getEntities(doc)

 if doc['entities'].get('user_mentions'):
 for user_mention in doc['entities']['user_mentions']:
 yield ('@' + user_mention['screen_name'].lower(), [doc['_id'], doc['id']])
 if doc['entities'].get('hashtags'):
 for hashtag in doc['entities']['hashtags']:
 yield ('#' + hashtag['text'], [doc['_id'], doc['id']])

def summingReducer(keys, values, rereduce):
 if rereduce:
 return sum(values)
 else:
 return len(values)

view = ViewDefinition('index', 'entity_count_by_doc', entityCountMapper,
 reduce_fun=summingReducer, language='python')
view.sync(db)

entities_freqs = [(row.key, row.value) for row in
 db.view('index/entity_count_by_doc', group=True)]

Create output for the WP-Cumulus tag cloud and sort terms by freq along the way

raw_output = sorted([[escape(term), '', freq] for (term, freq) in entities_freqs
 if freq > MIN_FREQUENCY], key=lambda x: x[2])

Implementation adapted from
http://help.com/post/383276-anyone-knows-the-formula-for-font-s

min_freq = raw_output[0][2]
max_freq = raw_output[-1][2]

def weightTermByFreq(f):
 return (f - min_freq) * (MAX_FONT_SIZE - MIN_FONT_SIZE) / (max_freq
 - min_freq) + MIN_FONT_SIZE

weighted_output = [[i[0], i[1], weightTermByFreq(i[2])] for i in raw_output]

Substitute the JSON data structure into the template

html_page = open(HTML_TEMPLATE).read() % \

160 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

 (json.dumps(weighted_output),)

if not os.path.isdir('out'):
 os.mkdir('out')

f = open(os.path.join('out', os.path.basename(HTML_TEMPLATE)), 'w')
f.write(html_page)
f.close()

print 'Tagcloud stored in: %s' % f.name

Open up the web page in your browser

webbrowser.open("file://" + os.path.join(os.getcwd(), 'out',
 os.path.basename(HTML_TEMPLATE)))

The most notable portion of the listing is the incorporation of the following formula
that weights the tags in the cloud:

This formula weights term frequencies such that they are linearly squashed between
MIN_FONT_SIZE and MAX_FONT_SIZE by taking into account the frequency for the term in
question along with the maximum and minimum frequency values for the data. There
are many variations that could be applied to this formula, and the incorporation of
logarithms isn’t all that uncommon. Kevin Hoffman’s paper, “In Search of the Perfect
Tag Cloud”, provides a nice overview of various design decisions involved in crafting
tag clouds and is a useful starting point if you’re interested in taking a deeper dive into
tag cloud design.

The tagcloud_template.html file that’s referenced in Example 5-17 is fairly uninteresting
and is available with this book’s source code on GitHub; it is nothing more than a
simple adaptation from the stock example that comes with the tag cloud’s source code.
Some script tags in the head of the page take care of all of the heavy lifting, and all you
have to do is feed some data into a makeshift template, which simply uses string sub-
stitution to replace the %s placeholder.

Figures 5-6 and 5-7 display tag clouds for tweet entities with a frequency greater than
30 that co-occur with #JustinBieber and #TeaParty. The most obvious difference be-
tween them is how crowded the #TeaParty tag cloud is compared to the #JustinBieber
cloud. The gisting of other topics associated with the query terms is also readily appa-
rent. We already knew this from Figure 5-5, but a tag cloud conveys a similar gist and
provides useful interactive capabilities to boot. Of course, there’s also nothing stopping
you from creating interactive Ajax Charts with tools such as Google Chart Tools.

Visualizing Tons of Tweets | 161

Figure 5-6. An interactive 3D tag cloud for tweet entities co-occurring with #JustinBieber

Visualizing Community Structures in Twitter Search Results
We briefly compared #JustinBieber and #TeaParty queries earlier in this chapter, and
this section takes that analysis a step further by introducing a couple of visualizations
from a slightly different angle. Let’s take a stab at visualizing the community structures
of #TeaParty and #JustinBieber Twitterers by taking the search results we’ve previ-
ously collected, computing friendships among the tweet authors and other entities
(such as @mentions and #hashtags) appearing in those tweets, and visualizing those
connections. In addition to yielding extra insights into our example, these techniques
also provide useful starting points for other situations in which you have an interesting
juxtaposition in mind. The code listing for this workflow won’t be shown here because
it’s easily created by recycling code you’ve already seen earlier in this chapter and in
previous chapters. The high-level steps involved include:

• Computing the set of screen names for the unique tweet authors and user mentions
associated with the search-teaparty and search-justinbieber CouchDB databases

• Harvesting the friend IDs for the screen names with Twitter’s /friends/ids
resource

162 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

• Resolving screen names for the friend IDs with Twitter’s /users/lookup resource
(recall that there’s not a direct way to look up screen names for friends; ID values
must be collected and then resolved)

• Constructing a networkx.Graph by walking over the friendships and creating an
edge between two nodes where a friendship exists in either direction

• Analyzing and visualizing the graphs

Figure 5-7. An interactive 3D tag cloud for tweet entities co-occurring with #TeaParty

The result of the script is a pickled graph file that you can open up in the interpreter
and poke around at, as illustrated in the interpreter session in Example 5-18. Because
the script is essentially just bits and pieces of recycled logic from earlier examples, it’s
not included here in the text, but is available online. The analysis is generated from
running the script on approximately 3,000 tweets for each of the #JustinBieber and
#TeaParty searches. The output from calls to nx.degree, which returns the degree† of
each node in the graph, is omitted and rendered visually as a simple column chart in
Figure 5-8.

Visualizing Tons of Tweets | 163

Example 5-18. Using the interpreter to perform ad-hoc graph analysis

>>> import networkx as nx
>>> teaparty = nx.read_gpickle("out/search-teaparty.gpickle")
>>> justinbieber = nx.read_gpickle("out/search-justinbieber.gpickle")
>>> teaparty.number_of_nodes(), teaparty.number_of_edges()
(2262, 129812)
>>> nx.density(teaparty)
0.050763513558431887
>>> sorted(nx.degree(teaparty)
... output omitted ...
>>> justinbieber.number_of_nodes(), justinbieber.number_of_edges()
(1130, 1911)
>>> nx.density(justinbieber)
>>> 0.0029958378077553165
>>> sorted(nx.degree(teaparty))
... output omitted ...

Figure 5-8. A simple way to compare the “connectedness” of graphs is to plot out the sorted degree of
each node and overlay the curves

† The degree of a node in an undirected graph is its total number of edges.

164 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

Without any visual representation at all, the results from the interpreter session are
very telling. In fact, it’s critical to be able to reason about these kinds of numbers with-
out seeing a visualization because, more often than not, you simply won’t be able to
easily visualize complex graphs without a large time investment. The short story is that
the density and the ratio of nodes to edges (users to friendships among them) in the
#TeaParty graph vastly outstrip those for the #JustinBieber graph. However, that ob-
servation in and of itself may not be the most surprising thing. The surprising thing is
the incredibly high connectedness of the nodes in the #TeaParty graph. Granted,
#TeaParty is clearly an intense political movement with a relatively small following,
whereas #JustinBieber is a much less concentrated entertainment topic with interna-
tional appeal. Still, the overall distribution and shape of the curve for the #TeaParty
results provide an intuitive and tangible view of just how well connected the #TeaParty
folks really are. A 2D visual representation of the graph doesn’t provide too much
additional information, but the suspense is probably killing you by now, so without
further ado—Figure 5-9.

Recall that *nix users can write out a Graphviz output with nx.drawing.write_dot, but
Windows users may need to manually generate the DOT language output. See Exam-
ples 1-12 and 2-4. For large undirected graphs, you’ll find Graphviz’s SFDP (scalable
force directed placement) engine invaluable. Sample usage for how you might invoke
it from a command line to produce a useful layout for a dense graph follows:

$sfdp -Tpng -
Oteaparty -Nfixedsize=true -Nlabel='' -Nstyle=filled -Nfillcolor=red -
Nheight=0.1 -Nwidth=0.1 -Nshape=circle -Gratio=fill -Goutputorder=edgesfirst -
Gratio=fill -Gsize='10!' -Goverlap=prism teaparty.dot

Figure 5-9. A 2D representation showcasing the connectedness of #JustinBieber (left) and #TeaParty
(right) Twitterers; each edge represents a friendship that exists in at least one direction

Visualizing Tons of Tweets | 165

Closing Remarks
There are a ridiculous number of obvious things you can do with tweet data, and if you
get the least bit creative, the possibilities become beyond ridiculous. We’ve barely
scratched the surface in this chapter. An entire book could quite literally be devoted to
systematically working through more of the possibilities, and many small businesses
focused around tweet analytics could potentially turn a fairly healthy profit by selling
answers to certain classes of ad-hoc queries that customers could make. Here are in-
teresting ideas that you could pursue:

• Define a similarity metric and use it to compare or further analyze two Twitter
users or groups of users. You’ll essentially be developing a profile and then meas-
uring how well a particular user fits that profile. For example, do certain hashtags,
keywords (e.g., LOL, OMG, etc.), or similar metrics appear in #JustinBieber tweets
more than in more intellectual tweets like ones associated with #gov20? This
question might seem obvious, but what interesting things might you learn along
the way while calculating a quantifiable answer?

• Which celebrity Twitterers have a very low concentration of tweet entities yet a
high tweet volume? Does this make them ramblers—you know, those folks who
tweet 100 times a day about nothing in particular? Conversely, which celebrity
Twitterers have a high concentration of hashtags in their tweets? What obvious
comparisons can you make between the two groups?

• If you have a Twitter account and a reasonable number of tweets, consider ana-
lyzing yourself and comparing your tweet streams to those of other users. How
similar are you to various Twitterers along a particular spectrum?

• We didn’t broach the subject of Twitter’s lists API. Can you profile various mem-
bers of a list and try to discover latent social networks? For example, can you find
a metric that allows you to approximate political boundaries between followers of
the @timoreilly/healthcare and @timoreilly/gov20 lists?

• It might be interesting to analyze the volume of tweets or content of tweets by
time of day. This is a pretty simple exercise and could incorporate the SIMILE
Timeline—discussed in “Visualizing Mail “Events” with SIMILE Time-
line” on page 77—for easy visualization.

• Near real-time communication is increasingly becoming the norm and Twitter
provides a streaming API, which provides convenient access to much of their “fire
hose.” See the online streaming documentation and consider checking out
tweepy as a terrific streaming client.

166 | Chapter 5: Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet

CHAPTER 6

LinkedIn: Clustering Your Professional
Network for Fun (and Profit?)

This chapter introduces techniques and considerations for mining the troves of data
tucked away at LinkedIn, a popular and powerful social networking site focused on
professional and business relationships. You’re highly encouraged to build up a pro-
fessional LinkedIn network as you follow along with this chapter, but even if you don’t
have a LinkedIn profile, you can still apply many of the techniques we’ll explore to
other domains that provide a means of exporting information similar to that you’d find
in an address book. Although LinkedIn may initially seem like any other social network,
the data its API provides is inherently of a different nature. Generally speaking, people
who care enough to join LinkedIn are interested in the business opportunities that it
provides and want their profiles to look as stellar as possible—which means ensuring
that they provide ample details of a fairly personal nature conveying important business
relationships, job details, etc.

Given the somewhat sensitive nature of the data, the API is somewhat different than
many of the others we’ve looked at in this book. For example, while you can generally
access all of the interesting details about your contacts’ educational histories, previous
work positions, etc., you cannot determine whether two arbitrary people are “connec-
ted,” and the absence of such an API method is not accidental—this decision was made
because the management team at LinkedIn strongly believes that your professional
networking data is inherently private and far too valuable to open up to the same pos-
sibilities of exploitation as, say, knowledge about your Twitter or Facebook friends.*

Given that LinkedIn limits your access to information about your direct connections
and does not lend itself to being mined as a graph, it requires that you ask different
types of questions about the data that’s available to you. The remainder of this chapter

* LinkedIn’s position was relayed in a discussion between the author and D.J. Patil, Chief Scientist, Chief
Security Officer, and Senior Director—Project Analytics at LinkedIn.

167

introduces fundamental clustering techniques that can help you answer the following
kinds of queries:

• Which of your connections are the most similar based upon a criterion like job title?

• Which of your connections have worked in companies you want to work for?

• Where do most of your connections reside geographically?

Motivation for Clustering
Given the richness of LinkedIn data, being able to answer queries about your profes-
sional networks presents some powerful opportunities. However, in implementing sol-
utions to answer these types of questions, there are at least two common themes we’ll
encounter over and over again:

• It’s often necessary to measure similarity between two values (usually string val-
ues), whether they’re job titles, company names, professional interests, or any other
field you can enter in as free text. Chapter 7 officially introduces some additional
approaches and considerations for measuring similarity that you might want to
also review.

• In order to cluster all of the items in a set using a similarity metric, it would be ideal
to compare every member to every other member. Thus, for a set of n members,
you would perform somewhere on the order of n2 similarity computations in your
algorithm for the worst-case scenario. Computer scientists call this predicament
an n-squared problem and generally use the nomenclature O(n2) to describe it;†

conversationally, you’d say it’s a “Big-O of n-squared” problem. However, O(n2)
problems become intractable for very large values of n. Most of the time, the use
of the term “intractable” means you’d have to wait years (or even hundreds of
years) for a solution to be computed—or, at any rate, “too long” for the solution
to be useful.

These two issues inevitably come up in any discussion involving what is known as the
approximate matching problem,‡ which is a very well-studied (but still difficult and
messy) problem that’s ubiquitous in nearly any industry.

† Technically speaking, it is sometimes more precise to describe the time complexity of a problem as Θ(n2),
because O(n2) represents a worst case, whereas Θ(n2) represents a tighter bound for the expected
performance. In other words, Θ(n2) says that it’s not just an n2 problem in the worst case, it’s an n2 problem
in the best case, too. However, our objective in this chapter isn’t to analyze the runtime complexity of
algorithms (a difficult subject in and of itself), and we’ll stick with the more common O(n2) notation and
describing the worst case.

‡ Also commonly called fuzzy matching, clustering, and/or deduplication, among many other things. Trying
to perform approximate matching on multiple fields (records) is commonly referred to as the “record linkage”
problem.

168 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

Techniques for approximate matching are a fundamental part of any legitimate data
miner’s tool belt, because in nearly any sector of any industry—ranging from defense
intelligence to fraud detection at a bank to local landscaping companies—there can be
a truly immense amount of semi-standardized relational data that needs to be analyzed
(whether the people in charge realize it or not). What generally happens is that a com-
pany establishes a database for collecting some kind of information, but not every field
is enumerated into some predefined universe of valid answers. Whether it’s because
the application’s user interface logic wasn’t designed properly, because some fields just
don’t lend themselves to having static predetermined values, or because it was critical
to the user experience that users be allowed to enter whatever they’d like into a text
box, the result is always the same: you eventually end up with a lot of semistandardized
data, or “dirty records.” While there might be a total of N distinct string values for a
particular field, some number of these string values will actually relate the same con-
cept. Duplicates can occur for various reasons: erroneous misspellings, abbreviations
or shorthand, differences in the case of words, etc.

Although it may not be obvious, this is exactly the situation we’re faced with in mining
LinkedIn data: LinkedIn members are able to enter in their professional information
as free text, which results in a certain amount of unavoidable variation. For example,
if you wanted to examine your professional network and try to determine where most
of your connections work, you’d need to consider common variations in company
names. Even the simplest of company names have a few common variations you’ll
almost certainly encounter. For example, it should be obvious to most people that
“Google” is an abbreviated form of “Google, Inc.”, but even these kinds of simple
variations in naming conventions must be explicitly accounted for during standardi-
zation efforts. In standardizing company names, a good starting point is to first consider
suffixes such as “, Inc.”, “, LLC”, etc. Assuming you had a comma-separated values
(CSV) file of contacts that you’d exported from LinkedIn, you might start out by doing
some basic normalization and then printing out selected entities from a histogram, as
illustrated in Example 6-1.

The two primary ways you can access your LinkedIn data are by either exporting it as
address book data, which maintains very basic information such as name, job title,
company, and contact information, or using the LinkedIn API to programatically ex-
ploit the full details of your contacts. While using the API provides access to everything
that would be visible to you as an authenticated user browsing profiles at http://linkedin
.com, we can get all of the job title details we need for this first exercise by exporting
address book information. (We’ll use LinkedIn APIs later in this chapter, in “Fetching
Extended Profile Information” on page 188.) In case it’s not obvious how to export
your connections, Figure 6-1 provides some visual cues that show you how to make it
happen. We’ll be using Python’s csv module to parse the exported data; to ensure
compatibility with the upcoming code listing, choose the “Outlook CSV” option.

Motivation for Clustering | 169

Example 6-1. Simple normalization of company suffixes from address book data
(linkedin__analyze_companies.py)

-*- coding: utf-8 -*-

import sys
import nltk
import csv
from prettytable import PrettyTable

CSV_FILE = sys.argv[1]

Handle any known abbreviations,
strip off common suffixes, etc.

transforms = [(', Inc.', ''), (', Inc', ''), (', LLC', ''), (', LLP', '')]

csvReader = csv.DictReader(open(CSV_FILE), delimiter=',', quotechar='"')
contacts = [row for row in csvReader]
companies = [c['Company'].strip() for c in contacts if c['Company'].strip() != '']

for i in range(len(companies)):
 for transform in transforms:
 companies[i] = companies[i].replace(*transform)

pt = PrettyTable(fields=['Company', 'Freq'])
pt.set_field_align('Company', 'l')
fdist = nltk.FreqDist(companies)
[pt.add_row([company, freq]) for (company, freq) in fdist.items() if freq > 1]
pt.printt()

However, you’d need to get a little more sophisticated to handle more complex situa-
tions, such as the various manifestations of company names like O’Reilly Media that
you might encounter. For example, you might see this company’s name represented as
O’Reilly & Associates, O’Reilly Media, O’Reilly, Inc.,§ or just O’Reilly. The very same
problem presents itself in considering job titles, except that it can get a lot messier
because job titles are so much more variable. Table 6-1 lists a few job titles you’re likely
to encounter in a software company that include a certain amount of natural variation.
How many distinct roles do you see for the 10 distinct titles that are listed?

Table 6-1. Example job titles for the technology industry

Job Title

Chief Executive Officer

President/CEO

President & CEO

§ If you think this is starting to sound complicated, just consider the work taken on by Dun & Bradstreet (the
“Who’s Who” of company information), the company that is blessed with the challenge of maintaining a
worldwide directory that identifies companies spanning multiple languages from all over the globe.

170 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

Job Title

CEO

Developer

Software Developer

Software Engineer

Chief Technical Officer

President

Senior Software Engineer

Figure 6-1. To export your connections, click on Contacts, choose My Connections from the pop-up
menu, and then click on the "Export connections” link on the following screen

Motivation for Clustering | 171

While it’s certainly possible to define a list of aliases or abbreviations that equate titles
like CEO and Chief Executive Officer, it may not be very practical to manually define
lists that equate titles such as Software Engineer and Developer for the general case in
all possible domains. However, for even the messiest of fields in a worst-case scenario,
it shouldn’t be too difficult to implement a solution that condenses the data to the point
that it’s manageable for an expert to review it, and then feed it back into a program
that can apply it in much the same way that the expert would have done. More times
than not, this is actually the approach that organizations prefer since it allows humans
to briefly insert themselves into the loop to perform quality control.

Clustering Contacts by Job Title
Now that you can (hopefully) better appreciate the nature of the record-matching
problem, let’s collect some real-world data from LinkedIn and start hacking out clus-
ters. A few reasons you might be interested in mining your LinkedIn data are because
you want to take an honest look at whether your networking skills have been helping
you to meet the “right kinds of people,” or because you want to approach contacts who
will most likely fit into a certain socioeconomic bracket with a particular kind of busi-
ness enquiry or proposition. The remainder of this section systematically works
through some exercises in clustering your contacts by job title.

Standardizing and Counting Job Titles
An obvious starting point when working with a new data set is to count things, and
this situation is no different. This section introduces a pattern for transforming com-
mon job titles and then performs a basic frequency analysis.

Assuming you have a reasonable number of exported contacts, the minor nuances
among job titles that you’ll encounter may actually be surprising, but before we get
into that, let’s put together some code that establishes some patterns for normalizing
record data and takes a basic inventory sorted by frequency. Example 6-2 inspects job
titles and prints out frequency information for the titles themselves and for individual
tokens that occur in them. If you haven’t already, you’ll need to easy_install
prettytable, a package that you can use to produce nicely formatted tabular output.

Example 6-2. Standardizing common job titles and computing their frequencies
(linkedin__analyze_titles.py)

-*- coding: utf-8 -*-

import sys
import nltk
import csv
from prettytable import PrettyTable

CSV_FILE = sys.argv[1]

172 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

transforms = [
 ('Sr.', 'Senior'),
 ('Sr', 'Senior'),
 ('Jr.', 'Junior'),
 ('Jr', 'Junior'),
 ('CEO', 'Chief Executive Officer'),
 ('COO', 'Chief Operating Officer'),
 ('CTO', 'Chief Technology Officer'),
 ('CFO', 'Chief Finance Officer'),
 ('VP', 'Vice President'),
]

csvReader = csv.DictReader(open(CSV_FILE), delimiter=',', quotechar='"')
contacts = [row for row in csvReader]

Read in a list of titles and split apart
any combined titles like "President/CEO"
Other variations could be handled as well such
as "President & CEO", "President and CEO", etc.

titles = []
for contact in contacts:
 titles.extend([t.strip() for t in contact['Job Title'].split('/')
 if contact['Job Title'].strip() != ''])

Replace common/known abbreviations

for i in range(len(titles)):
 for transform in transforms:
 titles[i] = titles[i].replace(*transform)

Print out a table of titles sorted by frequency

pt = PrettyTable(fields=['Title', 'Freq'])
pt.set_field_align('Title', 'l')
titles_fdist = nltk.FreqDist(titles)
[pt.add_row([title, freq]) for (title, freq) in titles_fdist.items() if freq > 1]
pt.printt()

Print out a table of tokens sorted by frequency

tokens = []
for title in titles:
 tokens.extend([t.strip(',') for t in title.split()])
pt = PrettyTable(fields=['Token', 'Freq'])
pt.set_field_align('Token', 'l')
tokens_fdist = nltk.FreqDist(tokens)
[pt.add_row([token, freq]) for (token, freq) in tokens_fdist.items() if freq > 1
 and len(token) > 2]
pt.printt()

In short, the code reads in CSV records and makes a mild attempt at normalizing them
by splitting apart combined titles that use the forward slash (like a title of “President/
CEO”) and replacing known abbreviations. Beyond that, it just displays the results of

Clustering Contacts by Job Title | 173

a frequency distribution of both full job titles and individual tokens contained in the
job titles. This is nothing new, but it is useful as a starting template and provides you
with some reasonable insight into how the data breaks down. Sample results are shown
in Example 6-3.

Example 6-3. Sample results for Example 6-2

+--------------------------+------+
| Title | Freq |
+--------------------------+------+
Chief Executive Officer	16
Senior Software Engineer	12
Owner	9
Software Engineer	9

...

+-------------+------+
| Token | Freq |
+-------------+------+
Engineer	44
Software	31
Senior	27
Manager	26
Chief	24
Officer	12
Director	11

...

What’s interesting is that the sample results show that the most common job title based
on exact matches is “Chief Executive Officer,” while the most common token in the
job titles is “Engineer.” Although “Engineer” is not a constituent token of the most
common job title, it does appear in a large number of job titles (for example, “Senior
Software Engineer” and “Software Engineer,” which show up near the top of the job
titles list). In analyzing job title or address book data, this is precisely the kind of insight
that motivates the need for an approximate matching or clustering algorithm. The next
section investigates further.

Common Similarity Metrics for Clustering
The most substantive decision that needs to be made in taking a set of strings—job
titles, in this case—and clustering them in a useful way is which underlying similarity
metric to use. There are myriad string similarity metrics available, and choosing the
one that’s most appropriate for your situation largely depends on the nature of your
objective. A few of the common similarity metrics that might be helpful in comparing
job titles follow:

174 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

Edit distance
Edit distance, also known as Levenshtein distance, is a simple measure of how
many insertions, deletions, and replacements it would take to convert one string
into another. For example, the cost of converting “dad” into “bad” would be one
replacement operation and would yield a value of 1. NLTK provides an imple-
mentation of edit distance via the nltk.metrics.distance.edit_distance function.
Note that the actual edit distance between two strings is often different from the
number of operations required to compute the edit distance; computation of edit
distance is usually on the order of M*N operations for strings of length M and N.

n-gram similarity
An n-gram is just a terse way of expressing each possible consecutive sequence of
n tokens from a text, and it provides the foundational data structure for computing
collocations. Peek ahead to “Buzzing on Bigrams” on page 224 for an extended
discussion of n-grams and collocations.

There are many variations of n-gram similarity, but consider the straightforward
case of computing all possible bigrams for the tokens of two strings, and scoring
the similarity between the strings by counting the number of common bigrams
between them. Example 6-4 demonstrates.

Example 6-4. Using NLTK to compute bigrams in the interpreter

>>> ceo_bigrams = nltk.bigrams("Chief Executive Officer".split(), pad_right=True, \
... pad_left=True)
>>> ceo_bigrams
[(None, 'Chief'), ('Chief', 'Executive'), ('Executive', 'Officer'),
('Officer', None)]
>>> cto_bigrams = nltk.bigrams("Chief Technology Officer".split(), pad_right=True, \
... pad_left=True)
>>> cto_bigrams
[(None, 'Chief'), ('Chief', 'Technology'), ('Technology', 'Officer'),
 ('Officer', None)]
>>> len(set(ceo_bigrams).intersection(set(cto_bigrams)))
2

Note that the use of the keyword arguments pad_right and pad_left intentionally
allows for leading and trailing tokens to match. The effect of padding is to allow
bigrams such as (None, ‘Chief’) to emerge, which are important matches across
job titles. NLTK provides a fairly comprehensive array of bigram and trigram scor-
ing functions via the BigramAssociationMeasures and TrigramAssociationMeas
ures classes defined in nltk.metrics.association module.

Jaccard distance
The Jaccard metric expresses the similarity of two sets and is defined by |Set1
intersection Set2/|Set1 union Set2|. In other words, it’s the number of items in
common between the two sets divided by the total number of distinct items in the
two sets. Peek ahead to “How the Collocation Sausage Is Made: Contingency Ta-
bles and Scoring Functions” on page 228 for an extended discussion. In general,

Clustering Contacts by Job Title | 175

you’ll compute Jaccard similarity by using n-grams, including unigrams (single
tokens), to measure the similarity of two strings. An implementation of Jaccard
distance is available at nltk.metrics.distance.jaccard_distance and could be im-
plemented as:

len(X.union(Y)) - len(X.intersection(Y)))/float(len(X.union(Y))

where X and Y are sets of items.

MASI distance
The MASI‖ distance metric is a weighted version of Jaccard similarity that adjusts
the score to result in a smaller distance than Jaccard when a partial overlap between
sets exists. MASI distance is defined in NLTK as nltk.metrics.distance.masi_dis
tance, which can be implemented as:

1 - float(len(X.intersection(Y)))/float(max(len(X),len(Y)))

where X and Y are sets of items. Example 6-5 and the sample results in Table 6-2
provide some data points that may help you better understand this metric.

Example 6-5. Using built-in distance metrics from NLTK to compare small sets of items
(linkedin__distances.py)

-*- coding: utf-8 -*-

from nltk.metrics.distance import jaccard_distance, masi_distance
from prettytable import PrettyTable

fields = ['X', 'Y', 'Jaccard(X,Y)', 'MASI(X,Y)']
pt = PrettyTable(fields=fields)
[pt.set_field_align(f, 'l') for f in fields]

for z in range(4):
 X = set()
 for x in range(z, 4):
 Y = set()
 for y in range(1, 3):
 X.add(x)
 Y.add(y)
 pt.add_row([list(X), list(Y), round(jaccard_distance(X, Y), 2),
 round(masi_distance(X, Y), 2)])
pt.printt()

Notice that whenever the two sets are either completely disjoint or equal—i.e.,
when one set is totally subsumed# by the other—the MASI distance works out to
be the same value as the Jaccard distance. However, when the sets overlap only
partially, the MASI distance works out to be higher than the Jaccard distance. It’s
worth considering whether you think MASI will be more effective than Jaccard
distance for the task of scoring two arbitrary job titles and clustering them together

‖ Measuring Agreement on Set-Valued Items. See http://www.cs.columbia.edu/~becky/pubs/lrec06masi.pdf.

#def subsumed(X,Y): return X.union_update(Y) == X or Y.union_update(X) == Y

176 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

if the similarity (distance) between them exceeds a certain threshold. The table of
sample results in Table 6-2 tries to help you wrap your head around how MASI
compares to plain old Jaccard.

Table 6-2. A comparison of Jaccard and MASI distances for two small sets of items as emitted
from Example 6-5

X Y Jaccard (X,Y) MASI (X,Y)

[0] [1] 1.0 1.0

[0] [1, 2] 1.0 1.0

[0, 1] [1] 0.5 0.5

[0, 1] [1, 2] 0.67 0.5

[0, 1, 2] [1] 0.67 0.67

[0, 1, 2] [1, 2] 0.33 0.33

[0, 1, 2, 3] [1] 0.75 0.75

[0, 1, 2, 3] [1, 2] 0.5 0.5

[1] [1] 0.0 0.0

[1] [1, 2] 0.5 0.5

[1, 2] [1] 0.5 0.5

[1, 2] [1, 2] 0.0 0.0

[1, 2, 3] [1] 0.67 0.67

[1, 2, 3] [1, 2] 0.33 0.33

[2] [1] 1.0 1.0

[2] [1, 2] 0.5 0.5

[2, 3] [1] 1.0 1.0

[2, 3] [1, 2] 0.67 0.5

[3] [1] 1.0 1.0

[3] [1, 2] 1.0 1.0

While the list of interesting similarity metrics could go on and on, there’s quite literally
an ocean of literature about them online, and it’s easy enough to plug in and try out
different similarity heuristics once you have a better feel for the data you’re mining.
The next section works up a script that clusters job titles using the MASI similarity
metric.

A Greedy Approach to Clustering
Given MASI’s partiality to partially overlapping terms, and that we have insight sug-
gesting that overlap in titles is important, let’s try to cluster job titles by comparing
them to one another using MASI distance, as an extension of Example 6-2. Exam-

Clustering Contacts by Job Title | 177

ple 6-6 clusters similar titles and then displays your contacts accordingly. Take a look
at the code—especially the nested loop invoking the DISTANCE function that makes a
greedy decision—and then we’ll discuss.

Example 6-6. Clustering job titles using a greedy heuristic (linkedin__cluster_contacts_by_title.py)

-*- coding: utf-8 -*-

import sys
import csv
from nltk.metrics.distance import masi_distance

CSV_FILE = sys.argv[1]

DISTANCE_THRESHOLD = 0.34
DISTANCE = masi_distance

def cluster_contacts_by_title(csv_file):

 transforms = [
 ('Sr.', 'Senior'),
 ('Sr', 'Senior'),
 ('Jr.', 'Junior'),
 ('Jr', 'Junior'),
 ('CEO', 'Chief Executive Officer'),
 ('COO', 'Chief Operating Officer'),
 ('CTO', 'Chief Technology Officer'),
 ('CFO', 'Chief Finance Officer'),
 ('VP', 'Vice President'),
]

 seperators = ['/', 'and', '&']

 csvReader = csv.DictReader(open(csv_file), delimiter=',', quotechar='"')
 contacts = [row for row in csvReader]

Normalize and/or replace known abbreviations
and build up list of common titles

 all_titles = []
 for i in range(len(contacts)):
 if contacts[i]['Job Title'] == '':
 contacts[i]['Job Titles'] = ['']
 continue
 titles = [contacts[i]['Job Title']]
 for title in titles:
 for seperator in seperators:
 if title.find(seperator) >= 0:
 titles.remove(title)
 titles.extend([title.strip() for title in title.split(seperator)
 if title.strip() != ''])

 for transform in transforms:
 titles = [title.replace(*transform) for title in titles]
 contacts[i]['Job Titles'] = titles

178 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

 all_titles.extend(titles)

 all_titles = list(set(all_titles))

 clusters = {}
 for title1 in all_titles:
 clusters[title1] = []
 for title2 in all_titles:
 if title2 in clusters[title1] or clusters.has_key(title2) and title1 \
 in clusters[title2]:
 continue
 distance = DISTANCE(set(title1.split()), set(title2.split()))
 if distance < DISTANCE_THRESHOLD:
 clusters[title1].append(title2)

Flatten out clusters

 clusters = [clusters[title] for title in clusters if len(clusters[title]) > 1]

Round up contacts who are in these clusters and group them together

 clustered_contacts = {}
 for cluster in clusters:
 clustered_contacts[tuple(cluster)] = []
 for contact in contacts:
 for title in contact['Job Titles']:
 if title in cluster:
 clustered_contacts[tuple(cluster)].append('%s %s.'
 % (contact['First Name'], contact['Last Name'][0]))

 return clustered_contacts

if __name__ == '__main__':
 clustered_contacts = cluster_contacts_by_title(CSV_FILE)

 for titles in clustered_contacts:
 common_titles_heading = 'Common Titles: ' + ', '.join(titles)
 print common_titles_heading

 descriptive_terms = set(titles[0].split())
 for title in titles:
 descriptive_terms.intersection_update(set(title.split()))
 descriptive_terms_heading = 'Descriptive Terms: ' \
 + ', '.join(descriptive_terms)
 print descriptive_terms_heading
 print '-' * max(len(descriptive_terms_heading), len(common_titles_heading))
 print '\n'.join(clustered_contacts[titles])
 print

The code listing starts by separating out combined titles using a list of common con-
junctions and then normalizes common titles. Then, a nested loop iterates over all of
the titles and clusters them together according to a thresholded MASI similarity metric.
This tight loop is where most of the real action happens in the listing: it’s where each
title is compared to each other title. If the distance between any two titles as determined

Clustering Contacts by Job Title | 179

by a similarity heuristic is “close enough,” we greedily group them together. In this
context, being “greedy” means that the first time we are able to determine that an item
might fit in a cluster, we go ahead and assign it without further considering whether
there might be a better fit, or making any attempt to account for such a better fit if one
appears later. Although incredibly pragmatic, this approach produces very reasonable
results. Clearly, the choice of an effective similarity heuristic is critical, but given the
nature of the nested loop, the fewer times we have to invoke the scoring function, the
better. More will be said about this consideration in the next section, but do note that
we do use some conditional logic to try to avoid repeating unnecessary calculations if
possible.

The rest of the listing just looks up contacts with a particular job title and groups them
for display, but there is one other interesting nuance involved in computing clusters:
you often need to assign each cluster a meaningful label. The working implementation
computes labels by taking the setwise intersection of terms in the job titles for each
cluster, which seems reasonable given that it’s the most obvious common thread. Your
mileage is sure to vary with other approaches.

The types of results you might expect from this code are useful in that they group
together individuals who are likely to share common responsibilities in their job duties.
This information might be useful for a variety of reasons, whether you’re planning an
event that includes a “CEO Panel,” trying to figure out who can best help you to make
your next career move, or trying to determine whether you are really well-enough con-
nected to other similar professionals given your own job responsibilities. Abridged
results for a sample network are presented in Example 6-7.

Example 6-7. Sample output for Example 6-6

Common Titles: Chief Executive Officer,
 Chief Finance Officer,
 Chief Technology Officer,
 Chief Operations Officer
Descriptive Terms: Chief, Officer
--
Gregg P.
Scott S.
Mario G.
Brian F.
Damien K.
Chris A.
Trey B.
Emil E.
Dan M.
Tim E.
John T. H.

...

Common Titles: Consultant,

180 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

 Software Engineer,
 Software Engineer
Descriptive Terms: Software, Engineer

Kent L.
Paul C.
Rick C.
James B.
Alex R.
Marco V.
James L.
Bill T.

...

Scalable clustering sure ain’t easy

It’s important to note that in the worst case, the nested loop executing the DISTANCE
calculation from Example 6-6 would require it to be invoked in what we’ve
already mentioned is O(n2) time complexity—in other words,
len(all_titles)*len(all_titles) times. A nested loop that compares every single item
to every single other item for clustering purposes is not a scalable approach for a very
large value of n, but given that the unique number of titles for your professional network
is not likely to be very large, it shouldn’t impose a performance constraint. It may not
seem like a big deal—after all, it’s just a nested loop—but the crux of an O(n2) algorithm
is that the number of comparisons required to process an input set increases exponen-
tially in proportion to the number of items in the set. For example, a small input set of
100 job titles would require only 10,000 scoring operations, while 10,000 job titles
would require 100,000,000 scoring operations. The math doesn’t work out so well and
eventually buckles, even when you have a lot of hardware to throw at it.

Your initial reaction when faced with what seems like a predicament that scales expo-
nentially will probably be to try to reduce the value of n as much as possible. But most
of the time you won’t be able to reduce it enough to make your solution scalable as the
size of your input grows, because you still have an O(n2) algorithm. What you really
want to do is figure out a way to come up with an algorithm that’s on the order of
O(k*n), where k is much smaller than n and represents a manageable amount of over-
head that grows much more slowly than the rate of n’s growth. But as with any other
engineering decision, there are performance and quality trade-offs to be made in all
corners of the real world, and it sure ain’t easy to strike the right balance. In fact, many
data-mining companies that have successfully implemented scalable record-matching
analytics at a high degree of fidelity consider their specific approaches to be proprietary
information (trade secrets), since they result in definite business advantages. (More
times than you’d think, it’s not the ability to solve a problem that really matters, but
the ability to implement it in a particular manner that can be taken to the market.)

For situations in which an O(n2) algorithm is simply unacceptable, one variation to the
working example that you might try is rewriting the nested loops so that a random

Clustering Contacts by Job Title | 181

sample is selected for the scoring function, which would effectively reduce it to
O(k*n), if k were the sample size. As the value of the sample size approaches n, however,
you’d expect the runtime to begin approaching the O(n2) runtime. Example 6-8 shows
how that sampling technique might look in code; the key changes to the previous listing
are highlighted in bold. The key takeaway is that for each invocation of the outer loop,
we’re executing the inner loop a much smaller, fixed number of times.

Example 6-8. A small modification to an excerpt of Example 6-6 that incorporates random sampling
to improve performance

...snip ...

all_titles = list(set(all_titles))
clusters = {}
for title1 in all_titles:
 clusters[title1] = []
 for sample in range(SAMPLE_SIZE):
 title2 = all_titles[random.randint(0, len(all_titles)-1)]
 if title2 in clusters[title1] or clusters.has_key(title2) and title1 \
 in clusters[title2]:
 continue
 distance = DISTANCE(set(title1.split()), set(title2.split()))
 if distance < DISTANCE_THRESHOLD:
 clusters[title1].append(title2)

...snip ...

Another approach you might consider is to randomly sample the data into n bins (where
n is some number that’s generally less than or equal to the square root of the number
of items in your set), perform clustering within each of those individual bins, and then
optionally merge the output. For example, if you had one million items, an O(n2) al-
gorithm would take a trillion logical operations, whereas binning the one million items
into 1,000 bins containing 1,000 items each and clustering each individual bin would
require only a billion operations. (That’s 1,000*1,000 comparisons for each bin for all
1,000 bins.) A billion is still a large number, but it’s three orders of magnitude smaller
than a trillion, and that’s nothing to sneeze at.

There are many other approaches in the literature besides sampling or binning that
could be far better at reducing the dimensionality of a problem. For example, you’d
ideally compare every item in a set, and at the end of the day, the particular technique
you’ll end up using to avoid an O(n2) situation for a large value of n will vary based
upon real-world constraints and insights you’re likely to gain through experimentation
and domain-specific knowledge. As you consider the possibilities, keep in mind that
the field of machine learning offers many techniques that are designed to combat exactly
these types of scale problems by using various sorts of probabilistic models and so-
phisticated sampling techniques. The next section introduces a fairly intuitive and well-
known clustering algorithm called k-means, which is a general-purpose unsupervised
approach for clustering a multidimensional space. We’ll be using this technique later
to cluster your contacts by geographic location.

182 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

Intelligent clustering enables compelling user experiences

It’s easy to get so caught up in the data-mining techniques themselves that you lose
sight of the business case that motivated them in the first place. Simple clustering
techniques can create incredibly compelling user experiences (all over the place) by
leveraging results even as simple as the job title ones we just produced. Figure 6-2
demonstrates a powerful alternative view of your data via a simple tree widget that
could be used as part of a navigation pane or faceted display for filtering search criteria.
Assuming that the underlying similarity metrics you’ve chosen have produced mean-
ingful clusters, a simple hierarchical display that presents data in logical groups with a
count of the items in each group can streamline the process of finding information, and
power intuitive workflows for almost any application where a lot of skimming would
otherwise be required to find the results.

Figure 6-2. Intelligently clustering data lends itself to faceted displays and compelling user experiences

The code to create a simple navigational display can be surprisingly simple, given the
maturity of Ajax toolkits and other UI libraries. For example, Example 6-9 shows a
simple web page that is all that’s required to populate the Dojo tree widget shown in
Figure 6-2 using a makeshift template.

Example 6-9. A template for a Dojo tree widget, as displayed in Figure 6-2—just add data and watch
it go!

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title>Clustered Contacts</title>
 <link rel="stylesheet"
 href="http://ajax.googleapis.com/ajax/libs/dojo/1.5/dojo/resources/dojo.css">
 <link rel="stylesheet"

Clustering Contacts by Job Title | 183

 href="http://ajax.googleapis.com/ajax/libs/dojo/1.5/dijit/themes/claro/claro.css">

 <script src="http://ajax.googleapis.com/ajax/libs/dojo/1.5/dojo/dojo.xd.js"
 type="text/javascript" djConfig="parseOnLoad:true"></script>

 <script language="JavaScript" type="text/javascript">
 dojo.require("dojo.data.ItemFileReadStore");
 dojo.require("dijit.Tree");
 dojo.require("dojo.parser");
 </script>

 <script language="JavaScript" type="text/javascript">
 var data = %s; //substituted by Python
 </script>

</head>
<body class="claro">
 <div dojoType="dojo.data.ItemFileReadStore" jsId="jobsStore"
 data="data"></div>

 <div dojoType="dijit.Tree" id="mytree" store="jobsStore"
 label="Clustered Contacts" openOnClick="true">
 </div>
</body>
</html>

The data value that’s substituted into the template is a simple JSON structure, which
we can obtain easily enough by modifying the output from Example 6-6, as illustrated
in Example 6-10.

Example 6-10. Munging the clustered_contacts data that’s computed in Example 6-6 to produce JSON
that’s consumable by Dojo’s tree widget

import json
import webbrowser
import os

data = {"label" : "name", "temp_items" : {}, "items" : []}
for titles in clustered_contacts:
 descriptive_terms = set(titles[0].split())
 for title in titles:
 descriptive_terms.intersection_update(set(title.split()))
 descriptive_terms = ', '.join(descriptive_terms)

 if data['temp_items'].has_key(descriptive_terms):
 data['temp_items'][descriptive_terms].extend([{'name' : cc } for cc
 in clustered_contacts[titles]])
 else:
 data['temp_items'][descriptive_terms] = [{'name' : cc } for cc
 in clustered_contacts[titles]]

for descriptive_terms in data['temp_items']:
 data['items'].append({"name" : "%s (%s)" % (descriptive_terms,
 len(data['temp_items'][descriptive_terms]),),
 "children" : [i for i in

184 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

 data['temp_items'][descriptive_terms]]})

del data['temp_items']

Open the template and substitute the data

if not os.path.isdir('out'):
 os.mkdir('out')

TEMPLATE = os.path.join(os.getcwd(), '..', 'web_code', 'dojo', 'dojo_tree.html')
OUT = os.path.join('out', 'dojo_tree.html')

t = open(TEMPLATE).read()
f = open(OUT, 'w')
f.write(t % json.dumps(data, indent=4))
f.close()

webbrowser.open("file://" + os.path.join(os.getcwd(), OUT))

There’s incredible value in being able to create user experiences that present data in
intuitive ways that power workflows. Something as simple as an intelligently crafted
hierarchical display can inadvertently motivate users to spend more time on a site,
discover more information than they normally would, and ultimately realize more value
in the services the site offers.

Hierarchical and k-Means Clustering
Example 6-6 introduced a greedy approach to clustering, but there are at least two other
common clustering techniques that you should know about: hierarchical clustering
and k-means clustering. Hierarchical clustering is superficially similar to the greedy
heuristic we have been using, while k-means clustering is radically different. We’ll pri-
marily focus on k-means throughout the rest of this chapter, but it’s worthwhile to
briefly introduce the theory behind both of these approaches since you’re very likely
to encounter them during literature review and research. An excellent implementation
of both of these approaches is available via the cluster module that you can
easy_install, so please go ahead and take a moment to do that.

Hierarchical clustering

Hierarchical clustering is a deterministic and exhaustive technique, in that it computes
the full matrix of distances between all items and then walks through the matrix clus-
tering items that meet a minimum distance threshold. It’s hierarchical in that walking
over the matrix and clustering items together naturally produces a tree structure that
expresses the relative distances between items. In the literature, you may see this tech-
nique called agglomerative, because the leaves on the tree represent the items that are
being clustered, while nodes in the tree agglomerate these items into clusters.

Clustering Contacts by Job Title | 185

This technique is similar to but not fundamentally the same as the approach used in
Example 6-6, which uses a greedy heuristic to cluster items instead of successively
building up a hierarchy. As such, the actual wall clock time (the amount of time it takes
for the code to run) for hierarchical clustering may be a bit longer, and you may need
to tweak your scoring function and distance threshold. However, the use of dynamic
programming and other clever bookkeeping techniques can result in substantial savings
in wall clock execution time, depending on the implementation. For example, given
that the distance between two items such as job titles is almost certainly going to be
symmetric, you should only have to compute one half of the distance matrix instead of
the full matrix. Even though the time complexity of the algorithm as a whole is still
O(n2), only 0.5*n2 units of work are being performed instead of n2 units of work.

If we were to rewrite Example 6-6 to use the cluster module, the nested loop perform-
ing the clustering DISTANCE computation would be replaced with something like the
code in Example 6-11.

Example 6-11. A minor modification to Example 6-6 that uses cluster.HierarchicalClustering instead
of a greedy heuristic (linkedin__cluster_contacts_by_title_hac.py)

... snip ...

Import the goods
from cluster import HierarchicalClustering

Define a scoring function
def score(title1, title2):
 return DISTANCE(set(title1.split()), set(title2.split()))

Feed the class your data and the scoring function
hc = HierarchicalClustering(all_titles, score)

Cluster the data according to a distance threshold
clusters = hc.getlevel(DISTANCE_THRESHOLD)

Remove singleton clusters
clusters = [c for c in clusters if len(c) > 1]

... snip ...

If you’re very interested in variations on hierarchical clustering, be sure to check out
the HierarchicalClustering class’ setLinkageMethod method, which provides some
subtle variations on how the class can compute distances between clusters. For exam-
ple, you can specify whether distances between clusters should be determined by cal-
culating the shortest, longest, or average distance between any two clusters. Depending
on the distribution of your data, choosing a different linkage method can potentially
produce quite different results. Figure 6-3 displays a portion of a professional network
as a radial tree layout and a dendogram using Protovis, a powerful HTML5-based vis-
ualization toolkit. The radial tree layout is more space-efficient and probably a better
choice for this particular data set, but a dendogram would be a great choice if you

186 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

needed to easily find correlations between each level in the tree (which would corre-
spond to each level of agglomeration in hierarchical clustering) for a more complex set
of data. Both of the visualizations presented here are essentially just static incarnations
of the interactive tree widget from Figure 6-2. As they show, an amazing amount of
information becomes apparent when you are able to look at a simple image of your
professional network.*

Figure 6-3. A Protovis radial tree layout of contacts clustered by job title (left), and a slice of the same
data presented as a dendogram (right)

k-means clustering

Whereas hierarchical clustering is a deterministic technique that exhausts the possi-
bilities and is an O(n2) approach, k-means clustering generally executes on the order
of O(k*n) times. The substantial savings in performance come at the expense of results
that are approximate, but they still have the potential to be quite good. The idea is that
you generally have a multidimensional space containing n points, which you cluster
into k clusters through the following series of steps:

1. Randomly pick k points in the data space as initial values that will be used to
compute the k clusters: K1, K2, …, Kk.

2. Assign each of the n points to a cluster by finding the nearest Kn—effectively cre-
ating k clusters and requiring k*n comparisons.

* linkedin__cluster_contacts_by_title_hac.py provides a minimal adaptation of Example 6-6 that
demonstrates how to produce output that could be consumed by Protovis.

Clustering Contacts by Job Title | 187

3. For each of the k clusters, calculate the centroid, or the mean of the cluster, and
reassign its Ki value to be that value. (Hence, you’re computing “k-means” during
each iteration of the algorithm.)

4. Repeat steps 2–3 until the members of the clusters do not change between itera-
tions. Generally speaking, relatively few iterations are required for convergence.

Because k-means may not be all that intuitive at first glance, Figure 6-4 displays each
step of the algorithm as presented in the online “Tutorial on Clustering Algorithms”,
which features an interactive Java applet. The sample parameters used involve 100 data
points and a value of 3 for the parameter k, which means that the algorithm will produce
three clusters. The important thing to note at each step is the location of the squares,
and which points are included in each of those three clusters as the algorithm pro-
gresses. The algorithm only takes nine steps to complete.

Although you could run k-means on points in two dimensions or two thousand
dimensions, the most common range is usually somewhere on the order of tens of
dimensions, with the most common cases being two or three dimensions. When
the dimensionality of the space you’re working in is relatively small, k-means can be
an effective clustering technique because it executes fairly quickly and is capable of
producing very reasonable results. You do, however, need to pick an appropriate value
for k, which is not always obvious. The next section demonstrates how to fetch more
extended profile information for your contacts, which bridges this discussion with a
follow-up exercise devoted to geographically clustering your professional network by
applying k-means.

Fetching Extended Profile Information
Although the earlier exercises in this chapter were interesting, sooner rather than later,
you’ll want to begin using the LinkedIn APIs to mine the full richness of the data that’s
available to you. As you’d expect, there’s a basic developer opt-in process where you
register to get authorization credentials; you’ll want to visit http://developer.linkedin
.com and read up on the full details, but Figure 6-5 demonstrates the broad strokes.
Once you have credentials, the overall process is similar to that of any other social
network that requires you to do the OAuth dance to access APIs: you request API
credentials, get back a token and secret, and then use these values to ultimately get the
coveted access token that can be used when sending requests. Of course, most of the
gory details will be abstracted away since we’ll be using the linkedin Python module
to do most of the tedious work for us. Just easy_install python-linkedin.

188 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

Figure 6-4. Progression of k-means for k=3 with 100 points

Fetching Extended Profile Information | 189

Figure 6-5. Basic steps involved in getting LinkedIn API credentials: from http://
developer.linkedin.com, pick “Your Stuff”→“API Keys” (top), then create a new app (middle), and
finally set up your app parameters and take note of your API key and secret (bottom)

Once the linkedin package is installed, the following script (Example 6-12) is a working
template that you can use to get logged in and start accessing your professional network
at the API level. The linkedin package is still somewhat nascent, so the process may
be a little more streamlined by the time you read this.†

† As of October 2010, LinkedIn is rolling out an OAuth 2 implementation. The linkedin module as of version
1.6 implements OAuth 1.0a as outlined in http://developer.linkedin.com/docs/.

190 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

Example 6-12. Harvesting extended profile information for your LinkedIn contacts
(linkedin__get_connections.py)

-*- coding: utf-8 -*-

import os
import sys
import webbrowser
import cPickle
from linkedin import linkedin

KEY = sys.argv[1]
SECRET = sys.argv[2]

Parses out oauth_verifier parameter from window.location.href and
displays it for the user

RETURN_URL = 'http://miningthesocialweb.appspot.com/static/linkedin_oauth_helper.html'

def oauthDance(key, secret, return_url):
 api = linkedin.LinkedIn(key, secret, return_url)

 result = api.requestToken()

 if not result:
 print >> sys.stderr, api.requestTokenError()
 return None

 authorize_url = api.getAuthorizeURL()

 webbrowser.open(authorize_url)

 oauth_verifier = raw_input('PIN number, bro: ')

 result = api.accessToken(verifier=oauth_verifier)
 if not result:
 print >> sys.stderr, 'Error: %s\nAborting' % api.getRequestTokenError()
 return None

 return api

First, do the oauth_dance

api = oauthDance(KEY, SECRET, RETURN_URL)

Now do something like get your connections:

if api:
 connections = api.GetConnections()
else:
 print >> sys.stderr, 'Failed to aunthenticate. You need to learn to dance'
 sys.exit(1)

Fetching Extended Profile Information | 191

Be careful - this type of API usage is "expensive".
See http://developer.linkedin.com/docs/DOC-1112

print >> sys.stderr, 'Fetching extended connections...'

extended_connections = [api.GetProfile(member_id=c.id, url=None, fields=[
 'first-name',
 'last-name',
 'current-status',
 'educations',
 'specialties',
 'interests',
 'honors',
 'positions',
 'industry',
 'summary',
 'location',
]) for c in connections]

Store the data

if not os.path.isdir('out'):
 os.mkdir('out')

f = open('out/linkedin_connections.pickle', 'wb')
cPickle.dump(extended_connections, f)
f.close()

print >> sys.stderr, 'Data pickled to out/linkedin_connections.pickle'

Note that unlike Twitter, LinkedIn requires that you specify your own URL for cap-
turing the OAuth verifier (access token) that’s needed for authorizing a command-line
client like the Python program we’re running. The web page template in Exam-
ple 6-13 is available at GitHub and demonstrates how to extract that information and
present it to the user in a Twitter-esque manner, in case you’re curious.

Example 6-13. A sample template that extracts the LinkedIn OAuth verifier and displays it for you

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title>LinkedIn OAuth Helper</title>

 <script src="http://ajax.googleapis.com/ajax/libs/dojo/1.5/dojo/dojo.xd.js"
 type="text/javascript"></script>
 <script type="text/javascript">
 dojo.ready(function() {
 var q = dojo.queryToObject(window.location.search.slice(1));
 dojo.byId("oauth_verifier").innerHTML = q.oauth_verifier;
 });
 </script>
</head>
<body>

192 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

 <div>
 Type the following identifier into the prompt in your terminal:

 </div>
</body>
</html>

That’s basically all you need to know to get up and running with the linkedin package,
but there are a couple of other important considerations for using the API. Perhaps the
most pertinent is that LinkedIn’s rate-throttling limits are a little more complex than
what you may have seen elsewhere. Applications you build have a total daily rate limit,
individual users of your applications have rate limits, and you as a developer have
another rate limit in most situations. Beyond that, there are different rate limits de-
pending on the particular API and whether the users of an application are accessing
their own data or data for folks in their networks. Once you meet or exceed the rate
limit, you have to wait until midnight Pacific Standard Time (PST) for it to reset.
Example 6-12 demonstrates how to get the “mini-profiles” for users via GetConnec
tions, and how to fetch full public profile details by passing in arguments to GetPro
file. The rate limits don’t really afford you the ability to accumulate large piles of data
via long-running processes, so the remaining samples in this chapter don’t use techni-
ques such as using a thread pool to speed up fetching data. You can easily stand by for
the minute or so it will take to max out your rate limit if you’re the type who likes to
spend all your money at one place.

Geographically Clustering Your Network
With the know-how to access extended LinkedIn profile information, and a working
knowledge of common clustering algorithms, all that’s left is to introduce a nice visu-
alization that puts it all together. The next section applies k-means to the problem of
clustering your professional contacts and plots them out in Google Earth. The section
after it introduces an alternative visualization called a Dorling Cartogram, which is
essentially a geographically clustered bubble chart that lets you easily visualize how
many of your contacts live in each state. Ironically, it doesn’t explicitly use a clustering
algorithm like k-means at all, but it still produces intuitive results that are mapped out
in 2D space, and it conveys a semblance of geographic clustering and frequency infor-
mation.

Mapping Your Professional Network with Google Earth
An interesting exercise in seeing k-means in action is to use it to visualize and cluster
your professional LinkedIn network by putting it on a map—or the globe, if you’re a
fan of Google Earth. In addition to the insight gained by visualizing how your contacts
are spread out, you can analyze clusters by using your contacts, the distinct employers
of your contacts, or the distinct metro areas in which your contacts reside as a basis.
All three approaches might yield results that are useful for different purposes. Through

Geographically Clustering Your Network | 193

the LinkedIn API, you can fetch location information that describes the major metro-
politan area, such as “Greater Nashville Area,” in which each of your contacts resides,
which with a bit of munging is quite adequate for geocoding the locations back into
coordinates that we can plot in a tool like Google Earth

The primary things that must be done in order to get the ball rolling include:

• Parsing out the geographic location from each of your contacts’ public profiles.
Example 6-12 demonstrates how to fetch this kind of information.

• Geocoding the locations back into coordinates. The approach we’ll take is to
easy_install geopy and let it handle all the heavy lifting. There’s a nice getting-
started guide available online; depending on your choice of geocoder, you may
need to request an API key from a service provider such as Google or Yahoo!.

• Feeding the geocoordinates into the KMeansClustering class of the cluster module
to calculate clusters.

• Constructing KML that can be fed into a visualization tool like Google Earth.

Lots of interesting nuances and variations become possible once you have the basic
legwork of Example 6-14 in place. The linkedin__kml_utility that’s referenced is
pretty uninteresting and just does some XML munging; you can view the details on
GitHub.

Recall from “Plotting geo data via microform.at and Google
Maps” on page 32 that you can point Google Maps to an addressable
URL pointing to a KML file if you’d prefer not to download and use
Google Earth.

Example 6-14. Geocoding the locations of your LinkedIn contacts and exporting them to KML
(linkedin__geocode.py)

-*- coding: utf-8 -*-

import os
import sys
import cPickle
from urllib2 import HTTPError
from geopy import geocoders
from cluster import KMeansClustering, centroid

A very uninteresting helper function to build up an XML tree

from linkedin__kml_utility import createKML

K = int(sys.argv[1])

Use your own API key here if you use a geocoding service
such as Google or Yahoo!

GEOCODING_API_KEY = sys.argv[2]

194 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

CONNECTIONS_DATA = sys.argv[3]

OUT = "clusters.kmeans.kml"

Open up your saved connections with extended profile information

extended_connections = cPickle.load(open(CONNECTIONS_DATA))
locations = [ec.location for ec in extended_connections]
g = geocoders.Yahoo(GEOCODING_API_KEY)

Some basic transforms may be necessary for geocoding services to function properly
Here are a few examples that seem to cause problems for Yahoo. You'll probably need
to add your own.

transforms = [('Greater ', ''), (' Area', ''), ('San Francisco Bay',
 'San Francisco')]

Tally the frequency of each location

coords_freqs = {}
for location in locations:

 # Avoid unnecessary I/O

 if coords_freqs.has_key(location):
 coords_freqs[location][1] += 1
 continue
 transformed_location = location

 for transform in transforms:
 transformed_location = transformed_location.replace(*transform)
 while True:
 num_errors = 0
 try:

 # This call returns a generator

 results = g.geocode(transformed_location, exactly_one=False)
 break
 except HTTPError, e:
 num_errors += 1
 if num_errors >= 3:
 sys.exit()
 print >> sys.stderr, e
 print >> sys.stderr, 'Encountered an urllib2 error. Trying again...'
 for result in results:

 # Each result is of the form ("Description", (X,Y))

 coords_freqs[location] = [result[1], 1]
 break

Here, you could optionally segment locations by continent
country so as to avoid potentially finding a mean in the middle of the ocean

Geographically Clustering Your Network | 195

The k-means algorithm will expect distinct points for each contact so build out
an expanded list to pass it

expanded_coords = []
for label in coords_freqs:
 ((lat, lon), f) = coords_freqs[label]
 expanded_coords.append((label, [(lon, lat)] * f)) # Flip lat/lon for Google Earth

No need to clutter the map with unnecessary placemarks...

kml_items = [{'label': label, 'coords': '%s,%s' % coords[0]} for (label,
 coords) in expanded_coords]

It could also be interesting to include names of your contacts on the map for display

for item in kml_items:
 item['contacts'] = '\n'.join(['%s %s.' % (ec.first_name, ec.last_name[0])
 for ec in extended_connections if ec.location
 == item['label']])

cl = KMeansClustering([coords for (label, coords_list) in expanded_coords
 for coords in coords_list])

centroids = [{'label': 'CENTROID', 'coords': '%s,%s' % centroid(c)} for c in
 cl.getclusters(K)]

kml_items.extend(centroids)
kml = createKML(kml_items)

if not os.path.isdir('out'):
 os.mkdir('out')

f = open("out/" + OUT, 'w')
f.write(kml)
f.close()

print >> sys.stderr, 'Data pickled to out/' + OUT

Location values returned as part of LinkedIn profile information are
generally of the form “Greater Nashville Area,” and a certain amount of
munging is necessary in order to extract the city name. The approach
presented here is imperfect, and you may have to tweak it based upon
what you see happening with your data to achieve total accuracy.

As in Example 6-6, most of the work involved in getting to the point where the results
can be visualized is data-processing boilerplate. The most interesting details are tucked
away inside of KMeansClustering’s getclusters method call, toward the end of the list-
ing. The approach demonstrated groups your contacts by location, clusters them, and
then uses the results of the clustering algorithm to compute the centroids. Figure 6-6
illustrates sample results from running the code in Example 6-14.

196 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

Figure 6-6. From top left to bottom: 1) clustering contacts by location so that you can easily see who
lives/works in what city, 2) finding the centroids of three clusters computed by k-means, 3) don’t forget
that clusters could span countries or even continents when trying to find an ideal meeting location!

Just visualizing your network can be pretty interesting, but computing the geographic
centroids of your professional network can also open up some intriguing possibilities.
For example, you might want to compute candidate locations for a series of regional
workshops or conferences. Alternatively, if you’re in the consulting business and have
a hectic travel schedule, you might want to plot out some good locations for renting a
little home away from home. Or maybe you want to map out professionals in your
network according to their job duties, or the socioeconomic bracket they’re likely to
fit in based on their job titles and experience. Beyond the numerous options opened
up by visualizing your professional network’s location data, geographic clustering lends
itself to many other possibilities, such as supply chain management and Travelling
Salesman types of problems.

Geographically Clustering Your Network | 197

Mapping Your Professional Network with Dorling Cartograms
Protovis, a cutting-edge HTML5-based visualization toolkit introduced in Chapter 7,
includes a visualization called a Dorling Cartogram, which is essentially a geographi-
cally clustered bubble chart. Whereas a more traditional cartogram might convey in-
formation by distorting the geographic boundaries of a state on a map, a Dorling Car-
togram places a uniform shape such as a circle on the map approximately where the
actual state would be located, and encodes information using the circumference (and
often the color) of the circle, as demonstrated in Figure 6-7. They’re a great visualization
tool because they allow you to use your instincts about where information should ap-
pear on a 2D mapping surface, and they are able to encode parameters using very
intuitive properties of shapes, like area and color.

Protovis also includes several other visualizations that convey geograph-
ical information, such as heatmaps, symbol maps, and chloropleth
maps. See “A Tour Through the Visualization Zoo” for an overview of
these and many other visualizations that may be helpful.

All that said, assuming you’ve followed along with Example 6-14 and successfully ge-
ocoded your contacts from the location data provided by LinkedIn, a minimal adjust-
ment to the script to produce a slightly different output is all that’s necessary to power
a Protovis Dorling Cartogram visualization.‡ A modified version of the canonical Dorl-
ing Cartogram example is available at GitHub and should produce a visualization sim-
ilar to Figure 6-7. The sample code connects the dots to produce a useful visualization,
but there’s a lot more that you could do to soup it up, such as adding event handlers
to display connection information when you click on a particular state. As was pointed
out in the Warning just after Example 6-14, the geocoding approach implemented here
is necessarily imperfect and may require some tweaking.

Closing Remarks
This chapter covered some serious ground, introducing fundamental clustering tech-
niques and applying them to your professional network data on LinkedIn in a variety
of ways. As in the other chapters, we just touched the tip of the iceberg; there are many
other interesting things that you can do with your LinkedIn data that were not
introduced in this chapter. Take some time to explore the extended profile information
that you have available. It could be interesting to try to correlate where people work
versus where they went to school and/or analyze whether people tend to relocate into
and out of certain areas, but keep in mind that your tool belt contains lots of other tools
by now that don’t necessarily have to include geo data or clustering. If you do continue

‡ The Protovis Dorling Cartogram visualization currently is implemented to handle locations in the United
States only.

198 | Chapter 6: LinkedIn: Clustering Your Professional Network for Fun (and Profit?)

to look at geo data, one of the many projects you might want to check out is an emerging
open framework called geodict.

Figure 6-7. A Dorling Cartogram that uses the area of a circle to convey the number of colleagues
that reside in each state; color could have been used to denote another variable, such as the
unemployment rate associated with the state or your colleagues’ job turnover rates, as determined by
mining extended profile information

Closing Remarks | 199

CHAPTER 7

Google Buzz: TF-IDF, Cosine Similarity,
and Collocations

This short chapter begins our journey into text mining,* and it’s something of an in-
flection point in this book. Earlier chapters have mostly focused on analyzing structured
or semi-structured data such as records encoded as microformats, relationships among
people, or specially marked #hashtags in tweets. However, this chapter begins munging
and making sense of textual information in documents by introducing Information
Retrieval (IR) theory fundamentals such as TF-IDF, cosine similarity, and collocation
detection. As you may have already inferred from the chapter title, Google Buzz initially
serves as our primary source of data because it’s inherently social, easy to harvest,† and
has a lot of potential for the social web. Toward the end of this chapter, we’ll also look
at what it takes to tap into your Gmail data. In the chapters ahead, we’ll investigate
mining blog data and other sources of free text, as additional forms of text analytics
such as entity extraction and the automatic generation of abstracts are introduced.
There’s no real reason to introduce Buzz earlier in the book than blogs (the topic of
Chapter 8), other than the fact that it fills an interesting niche somewhere between
Twitter and blogs, so this ordering facilitates telling a story from cover to cover. All in
all, the text-mining techniques you’ll learn in any chapter of this book could just as
easily be applied to any other chapter.

Wherever possible we won’t reinvent the wheel and implement analysis tools from
scratch, but we will take a couple of “deep dives” when particularly foundational topics
come up that are essential to an understanding of text mining. The Natural Language
Toolkit (NLTK), a powerful technology that you may recall from some opening
examples in Chapter 1, provides many of the tools. Its rich suites of APIs can be a bit

* This book avoids splitting hairs over exactly what differences could be implied by common phrases such as
“text mining,” “unstructured data analytics” (UDA), or “information retrieval,” and simply treats them as
essentially the same thing.

† There’s also somewhat of a pun intended, since Google is so well known for its search capabilities and this
chapter hones in on fundamental document-centric search techniques.

201

overwhelming at first, but don’t worry: text analytics is an incredibly diverse and com-
plex field of study, but there are lots of powerful fundamentals that can take you a long
way without too significant of an investment. This chapter and the chapters after it aim
to hone in on those fundamentals.

A full-blown introduction to NLTK is outside the scope of this book,
but you can review the full text of Natural Language Processing with
Python: Analyzing Text with the Natural Language Toolkit (O’Reilly)
online. Paper copies are also available at http://oreilly.com/catalog/
9780596516499.

Buzz = Twitter + Blogs (???)
Anyone with a Gmail account also has a Buzz account. From a product standpoint,
Google Buzz seems to fit somewhere between Twitter and blogs. An activity on Buzz
can be just as long as a blog post, but it feels more informal, like a tweet. Similar to
Twitter, Buzz is typically used for quickly firing off ideas with minimal formatting, and
activity streams are established among friends and followers. In fact, many Buzz users
do customize their Buzz settings so that activity on Twitter appears in their Buzz feeds
(see Figure 7-1). At the time this book was written, Buzz also has a more compact API
than Twitter, and rate limiting doesn’t seem to be in place yet. So long as they last, both
of these characteristics can simplify the work involved in mining Buzz data. It’ll be
interesting to see how Buzz evolves to become more or less like Twitter and/or blogs.
For now, though, let’s get to work by harvesting and mining some data from Buzz. It’s
worth taking a moment to familiarize yourself with how Buzz works via a public feed
or through the “Buzz” navigational link in your Gmail account. Your (and everyone
else’s) public Buzz feed should be available at a URL of the following form: http://
www.googleapis.com/buzz/v1/activities/your_gmail_account_id/@public. For example,
Tim O’Reilly’s public Buzz feed is available at http://www.googleapis.com/buzz/v1/ac
tivities/timoreilly/@public.

Buzz exposes a RESTful API involving three primary resources: people, activities, and
comments. Buzz “activities” are more or less synonymous with “posts” since we’ll be
considering them as text-based resources. (However, do keep in mind that one of the
interesting things about Buzz is how it aims to seamlessly integrate other types of rich
media such as photos and videos from other Google products and services into your
activity stream.)

The Google Buzz API docs do a nice job of describing the RESTful ways that you can
interact with Buzz if you’re casually interested, but the book RESTful Web Services
(O’Reilly) is a great resource to have on hand if you’re interested in a more serious look
at REST and want to see lots of practical examples for handling not-so-obvious
situations.

202 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

Figure 7-1. Gmail account settings allow you to easily integrate activity from Twitter and other
services into your Buzz feed

Buzz = Twitter + Blogs (???) | 203

There’s a nice Python-based Buzz client named buzz available at http://code.google.com/
p/buzz-python-client/. You can install it via easy_install buzz-python-client.

Let’s fetch some data from Tim O’Reilly’s public Buzz feed. While the buzz module
exposes an OAuth support you can use should you find yourself in need of resources
that require authentication, in this chapter, we’ll only use information that can be ob-
tained from public profiles so we won’t need it. There are many interesting possibilities
for mining the social relationship data available from Google Buzz, but we’ll be focusing
on the free-text data available from posts rather than reinventing or building upon the
friend/follower approaches introduced in the earlier chapters covering Twitter. See
those chapters if you’re interested in interacting with Buzz in this way.

Buzz data is exposed as a feed, and you should assume that it contains markup, escaped
HTML entities, etc. The following listing provides an example session demonstrating
how to use the buzz module to fetch and distill plain text suitable for mining from up
to 100 public posts. Although this first example illustrates the use of CouchDB as a
storage medium, we’ll be making a transition away from CouchDB in this chapter in
favor of pickling data so that we can hone in on text-mining techniques, as opposed to
discussing storage considerations. If you’re interested in a more aggressive use of
CouchDB and useful add-ons like couchdb-lucene, revisit the earlier chapters of this
book.

Example 7-1 creates a convenient data structure consisting of the title, content, com-
ments, and link for each Buzz post, and stores it in a CouchDB database. It’s easy to
overlook or take for granted, but do note the importance of cleanHtml as well. It takes
care of stripping out markup and converting HTML entities so that the content of each
post is as clean and readable as possible—a very important consideration when your
analysis routines don’t expect to see HTML entities and such things.

Example 7-1. Harvesting Google Buzz data (buzz__get_buzz_posts_and_comments.py)

-*- coding: utf-8 -*-

import os
import sys
import buzz
from BeautifulSoup import BeautifulStoneSoup
from nltk import clean_html
import couchdb
import json

USER = sys.argv[1]

MAX_RESULTS = 100

Helper function for removing html and converting escaped entities.
Returns UTF-8

def cleanHtml(html):
 return BeautifulStoneSoup(clean_html(html),

204 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

 convertEntities=BeautifulStoneSoup.HTML_ENTITIES).contents[0]

client = buzz.Client()
posts_data = client.posts(type_id='@public',
 user_id=USER,
 max_results=MAX_RESULTS).data

posts = []
for p in posts_data:

 # Fetching lots of comments for lots of posts could take a little
 # bit of time. Thread pool code from mailboxes__CouchDBBulkReader.py could
 # be adapted for use here.

 comments = [{'name': c.actor.name, 'content': cleanHtml(c.content)} for c in
 p.comments().data]
 link = p.uri
 post = {
 'title': cleanHtml(p.title),
 'content': cleanHtml(p.content),
 'comments': comments,
 'link': link,
 }
 posts.append(post)

Store out to a local file as json data if you prefer

if not os.path.isdir('out'):
 os.mkdir('out')

filename = os.path.join('out', USER + '.buzz')
f = open(filename, 'w')
f.write(json.dumps(posts))
f.close()

print >> sys.stderr, "Data written to", f.name

Or store it somewhere like CouchDB like so...

server = couchdb.Server('http://localhost:5984')
DB = 'buzz-' + USER
db = server.create(DB)
db.update(posts, all_or_nothing=True)

Now that you have the tools to fetch and store Buzz data, let’s start analyzing it.

Data Hacking with NLTK
NLTK is written such that you can explore data very easily and begin to form some
impressions without a lot of upfront investment. Before skipping ahead, though,
consider following along with the interpreter session in Example 7-2 to get a feel for
some of the powerful functionality that NLTK provides right out of the box. Don’t

Data Hacking with NLTK | 205

forget that you can use the built-in help function to get more information whenever
you need it. For example, help(nltk) would provide documentation on the NLTK
package. Also keep in mind that not all of the functionality from the interpreter session
is intended for incorporation into production software, since output is written through
standard output and not capturable into a data structure such as a list. In that regard,
methods such as nltk.text.concordance are considered “demo functionality.” Speak-
ing of which, many of NLTK’s modules have a demo function that you can call to get
some idea of how to use the functionality they provide, and the source code for these
demos is a great starting point for learning how to use new APIs. For example, you
could run nltk.text.demo() in the interpreter to get some additional insight into ca-
pabilities provided by the nltk.text module. We’ll take a closer look at how some of
this demonstration functionality works over the coming pages.

The examples throughout this chapter, including the following inter-
preter session, use the split method to tokenize text. Chapter 8 intro-
duces more sophisticated approaches for tokenization that may work
better.

Example 7-2. Hacking on Google Buzz data in the interpreter with NLTK. Example 7-1 produces a
USER.buzz file in the out directory from where you ran the script.

>>> import nltk
>>> import json
>>> buzz_data = json.loads(open("out/timoreilly.buzz").read())
>>> all_content = " ".join([p['content'] for p in buzz_data])
>>> len(all_content)
42930
>>> tokens = all_content.split()
>>> text = nltk.Text(tokens)
>>> text.concordance("open")
Building index...
Displaying 22 of 22 matches:
 operating system. Andy told him why open systems matter. "If google did not a
mulus payments for meaningful use of open healthcare records. It could also be
 planning meeting at the Times (it's open to the public). It's great to see ho
 me as the most influential voice in open source. http://www.mindtouch.com/blo
ff, I don't tweet or blog much about open source any more - though the subject
eply influenced by my thinking about open source. I came to articulate my idea
 about the long term implications of open source and how it would reshape the
ons have also taken me away from the open source mainstream. It's only recentl
ecently that members of the hardcore open source and free software advocacy co
ntally changing the context in which open source exists, and that it hasn't do
er in favor of understanding how the open source community actually communicat
y remind people to attend OSCON, the open Source Convention, where the long te
he long term thinking that drives my open source position is leading us to cov
n is leading us to cover topics like open source and cloud computing, open sou
ike open source and cloud computing, open source hardware, and many other topi
ks than you can count), I do have an open source bully pulpit. It just isn't t
Reilly to Keynote at Computerworld's open Source Business Conference http://bi
hasn't built a personal brand in the open source space such that his company i

206 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

trum auction and their launch of the open Handset Alliance are among the compa
ng their phone even further from the open web. In the end, if the iPhone fails
s have weaker adoption dynamics than open systems, not because Eric Schmidt be
he Gov't has put in place around the open government directive. Any pushing yo
>>> text.collocations()
Building collocations list
open source; Economist Innovation; 1/4 cup; long term; Innovation
event.; Web 2.0; I'd love; free software; Annalee Saxenian; Nexus
One.; came back; Cauliflower Pancakes; Eric Schmidt; Open Source;
certainly true; olive oil; Andy Rubin; Mr. O’Reilly; O’Reilly said.;
tech support
>>> fdist = text.vocab()
Building vocabulary index...
>>> fdist["open"]
19
>>> fdist["source"]
14
>>> fdist["web"]
3
>>> fdist["2.0"]
3
>>> len(tokens)
6942
>>> len(fdist.keys()) # unique tokens
2750
>>> [w for w in fdist.keys()[:100] \
... if w.lower() not in nltk.corpus.stopwords.words('english')]
[u'-', u"it's", u'open', u'like', u'people', u'also', u'would', u"It's", u"don't",
 u'source', u'Apple', u'one', u'Google', u'government', u"I'd", u'Microsoft',
 u'many', u'great', u'innovation', u'make', u'think', u'companies', u'even', u'get',
 u'good', u'lot', u'made', u'new', u'story', u'technology', u')', u"I'm", u'big',
 u'going', u'long', u'love']
>>> [w for w in fdist.keys() if len(w) > 15 and not w.startswith("http")]
[u'\u201c#airportsecurity', u'Caravaggiomania,', u'administrations,',
 u'anti-competitive.', u'apparentlycompared', u'entrepreneur-friendly.',
 u'entrepreneur-unfriendly.', u'flyontime.us/m/lines/security', u'government/small',
 u'interoperability', u'over-psychologized', u'super-impressive.',
 u'technology-minded']
>>> len([w for w in fdist.keys() if w.startswith("http")])
35
>>> for rank, word in enumerate(fdist): print rank, word, fdist[word]
0 the 317
1 to 199
2 of 180
3 a 150
4 that 129
5 and 122
6 in 110
7 is 79
... output truncated ...

Data Hacking with NLTK | 207

You may need to run nltk.download('stopwords') to download NLTK’s
stopwords data if you haven’t already installed it. If possible, it is rec-
ommended that you just run nltk.download() to install all of the NLTK
data.

The last command in the interpreter session lists the words from the frequency distri-
bution, sorted by frequency. Not surprisingly, common words like “the,” “to,” and
“of”—stopwords—are the most frequently occurring, but there’s a steep decline and
the distribution has a very long tail. We’re working with a small sample of Buzz data,
but this same property will hold true for any frequency analysis of natural language.
Zipf’s law, a well-known empirical law of natural language, asserts that a word’s fre-
quency within a corpus is inversely proportional to its rank in the frequency table. What
this means is that if the most frequently occurring term in a corpus accounts for N%
of the total words, the second most frequently occurring term in the corpus should
account for (N/2)% of the words, the third most frequent term for (N/3)% of the words,
etc. When graphed, such a distribution (even for a small sample of data) shows a curve
that hugs each axis, as you can see in Figure 7-2. An important observation is that most
of the area in such a distribution lies in its tail, which for a corpus large enough to span
a reasonable sample of a language is always quite long. If you were to plot this kind of
distribution on a chart where each axis was scaled by a logarithm, the curve would
approach a straight line for a representative sample size.

Figure 7-2. The frequency distribution for terms appearing in a small sample of Buzz data “hugs”
each axis

208 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

Zipf’s law gives you insight into what a frequency distribution for words appearing in
a corpus should look like, and it provides some rules of thumb that can be useful in
estimating frequency. For example, if you know that there are a million (nonunique)
words in a corpus, and you assume that the most frequently used word (usually “the,”
in English) accounts for 7% of the words‡, you could derive the total number of logical
calculations an algorithm performs if you were to consider a particular slice of the terms
from the frequency distribution. Sometimes, this kind of simple arithmetic on the back
of a napkin is all that it takes to sanity-check assumptions about a long-running wall-
clock time, or confirm whether certain computations on a large enough data set are
even tractable.

Text Mining Fundamentals
Although rigorous approaches to natural language processing (NLP) that include such
things as sentence segmentation, tokenization, word chunking, and entity detection
are necessary in order to achieve the deepest possible understanding of textual data,
it’s helpful to first introduce some fundamentals from Information Retrieval theory.
The remainder of this chapter introduces some of its more foundational aspects, in-
cluding TF-IDF, the cosine similarity metric, and some of the theory behind collocation
detection. Chapter 8 provides a deeper discussion of NLP.

If you want to dig deeper into IR theory, the full text of Introduction to
Information Retrieval is available online and provides more information
than you could ever want to know about the field.

A Whiz-Bang Introduction to TF-IDF
Information retrieval is an extensive field with many specialties. This discussion nar-
rows in on TF-IDF, one of the most fundamental techniques for retrieving relevant
documents from a corpus. TF-IDF stands for term frequency-inverse document fre-
quency and can be used to query a corpus by calculating normalized scores that express
the relative importance of terms in the documents. Mathematically, TF-IDF is ex-
pressed as the product of the term frequency and the inverse document frequency,
tf_idf = tf*idf, where the term tf represents the importance of a term in a specific docu-
ment, and idf represents the importance of a term relative to the entire corpus. Mul-
tiplying these terms together produces a score that accounts for both factors and has
been an integral part of every major search engine at some point in its existence. To get
a more intuitive idea of how TF-IDF works, let’s walk through each of the calculations
involved in computing the overall score.

‡ The word “the” accounts for 7% of the tokens in the Brown Corpus and provides a reasonable starting point
for a corpus if you don’t know anything else about it.

Text Mining Fundamentals | 209

For simplicity in illustration, suppose you have a corpus containing three sample docu-
ments and terms are calculated by simply breaking on whitespace, as illustrated in
Example 7-3.

Example 7-3. Sample data structures used in illustrations throughout this chapter

corpus = {
 'a' : "Mr. Green killed Colonel Mustard in the study with the candlestick. \
 Mr. Green is not a very nice fellow.",
 'b' : "Professor Plumb has a green plant in his study.",
 'c' : "Miss Scarlett watered Professor Plumb's green plant while he was away \
 from his office last week."
}

terms = {
 'a' : [i.lower() for i in corpus['a'].split()],
 'b' : [i.lower() for i in corpus['b'].split()],
 'c' : [i.lower() for i in corpus['c'].split()]
 }

A term’s frequency could simply be represented as the number of times it occurs in the
text, but it is more commonly the case that it is normalized by taking into account the
total number of terms in the text, so that the overall score accounts for document length
relative to a term’s frequency. For example, the term “green” (once normalized to low-
ercase) occurs twice in corpus['a'] and only once in corpus['b'], so corpus['a'] would
produce a higher score if frequency were the only scoring criterion. However, if you
normalize for document length, corpus['b'] would have a slightly higher term fre-
quency score for “green” (1/9) than corpus['a'] (2/19), because corpus['b'] is shorter
than corpus['a']—even though “green” occurs more frequently in corpus['a']. Thus,
a common technique for scoring a compound query such as “Mr. Green” is to sum the
term frequency scores for each of the query terms in each document, and return the
documents ranked by the summed term frequency score.

The previous paragraph is actually not as confusing as it sounds; for example, querying
our sample corpus for “Mr. Green” would return the normalized scores reported in
Table 7-1 for each document.

Table 7-1. Sample term frequency scores for “Mr. Green”

Document tf(Mr.) tf(Green) Sum

corpus['a'] 2/19 2/19 4/19 (0.2105)

corpus['b'] 0 1/9 1/9 (0.1111)

corpus['c'] 0 1/16 1/16 (0.0625)

For this contrived example, a cumulative term frequency scoring scheme works out
and returns corpus['a'] (the document that we’d expect it to return), since
corpus['a'] is the only one that contains the compound token “Mr. Green”. However,
a number of problems could have emerged because the term frequency scoring model

210 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

looks at each document as an unordered collection of words. For example, queries for
“Green Mr.” or “Green Mr. Foo” would have returned the exact same scores as the
query for “Mr. Green”, even though neither of those compound tokens appear in the
sample sentences. Additionally, there are a number of scenarios that we could easily
contrive to illustrate fairly poor results from the term frequency ranking technique by
exploiting the fact that trailing punctuation is not properly handled, and the context
around tokens of interest is not taken into account by the calculations.

Considering term frequency alone turns out to be a common problem when scoring on
a document-by-document basis because it doesn’t account for very frequent words that
are common across many documents. Meaning, all terms are weighted equally regard-
less of their actual importance. For example, “the green plant” contains the stopword
“the”, which skews overall term frequency scores in favor of corpus['a'] because “the”
appears twice in that document, as does “green”. In contrast, in corpus['c'] “green”
and “plant” each appear only once. Consequently, the scores would break down as
shown in Table 7-2, with corpus['a'] ranked as more relevant than corpus['c'] even
though intuition might lead you to believe that ideal query results probably shouldn’t
have turned out that way. (Fortunately, however, corpus['b'] still ranks highest.)

Table 7-2. Sample term frequency scores for “the green plant”

Document tf(the) tf(green) tf(plant) Sum

corpus['a'] 2/19 2/19 0 4/19 (0.2105)

corpus['b'] 0 1/9 1/9 2/9 (0.2222)

corpus['c'] 0 1/16 1/16 1/8 (0.125)

Toolkits such as NLTK provide lists of stopwords that can be used to filter out terms
such as “the”, “a”, “and”, etc., but keep in mind that there may be terms that evade
even the best stopword lists and yet still are quite common to specialized domains. The
inverse document frequency metric is a calculation that provides a generic normaliza-
tion metric for a corpus, and accounts for the appearance of common terms across a
set of documents by taking into consideration the total number of documents in which
a query term ever appears. The intuition behind this metric is that it produces a higher
value if a term is somewhat uncommon across the corpus than if it is very common,
which helps to account for the problem with stopwords we just investigated. For ex-
ample, a query for “green” in the corpus of sample documents should return a lower
inverse document frequency score than “candlestick”, because “green” appears in every
document while “candlestick” appears in only one. Mathematically, the only nuance
of interest for the inverse document frequency calculation is that a logarithm is used to
squash the result into a compressed range (as shown in Figure 7-3) since its usual
application is in multiplying it against term frequency as a scaling factor.

Text Mining Fundamentals | 211

Figure 7-3. The logarithm squashes a large range of values into a more compressed space

At this point, we’ve come full circle and devised a way to compute a score for a multi-
term query that accounts for the frequency of terms appearing in a document, the length
of the document in which any particular term appears, and the overall uniqueness of
the terms across documents in the entire corpus. In other words, tf-idf = tf*idf.
Example 7-4 is a naive implementation of this discussion that should help solidify the
concepts described. Take a moment to review it, and then we’ll discuss a few sample
queries.

Example 7-4. Running TF-IDF on sample data (buzz__tf_idf.py)

-*- coding: utf-8 -*-

import sys
from math import log

QUERY_TERMS = sys.argv[1:]

def tf(term, doc, normalize=True):
 doc = doc.lower().split()
 if normalize:
 return doc.count(term.lower()) / float(len(doc))
 else:

212 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

 return doc.count(term.lower()) / 1.0

def idf(term, corpus):
 num_texts_with_term = len([True for text in corpus if term.lower()
 in text.lower().split()])

 # tf-idf calc involves multiplying against a tf value less than 0, so it's important
 # to return a value greater than 1 for consistent scoring. (Multiplying two values
 # less than 1 returns a value less than each of them)

 try:
 return 1.0 + log(float(len(corpus)) / num_texts_with_term)
 except ZeroDivisionError:
 return 1.0

def tf_idf(term, doc, corpus):
 return tf(term, doc) * idf(term, corpus)

corpus = \
 {'a': 'Mr. Green killed Colonel Mustard in the study with the candlestick. \
Mr. Green is not a very nice fellow.',
 'b': 'Professor Plumb has a green plant in his study.',
 'c': "Miss Scarlett watered Professor Plumb's green plant while he was away \
from his office last week."}

Score queries by calculating cumulative tf_idf score for each term in query

query_scores = {'a': 0, 'b': 0, 'c': 0}
for term in [t.lower() for t in QUERY_TERMS]:
 for doc in sorted(corpus):
 print 'TF(%s): %s' % (doc, term), tf(term, corpus[doc])
 print 'IDF: %s' % (term,), idf(term, corpus.values())
 print

 for doc in sorted(corpus):
 score = tf_idf(term, corpus[doc], corpus)
 print 'TF-IDF(%s): %s' % (doc, term), score
 query_scores[doc] += score
 print

print "Overall TF-IDF scores for query '%s'" % (' '.join(QUERY_TERMS),)
for (doc, score) in sorted(query_scores.items()):
 print doc, score

Although we’re working on a trivially small scale, the calculations involved work the
same for larger data sets. Table 7-3 is a consolidated adaptation of the program’s output
for three sample queries that involve four distinct terms:

• “green”

• “Mr. Green”

• “the green plant”

Text Mining Fundamentals | 213

Even though the IDF calculations for terms are for the entire corpus, they are displayed
on a per-document basis so that you can easily verify TF-IDF scores by skimming a
single row and multiplying two numbers. Again, it’s worth taking a few minutes to
understand the data in the table so that you have a good feel for the way the calculations
work. It’s remarkable just how powerful TF-IDF is, given that it doesn’t account for
the proximity or ordering of words in a document.

Table 7-3. Calculations involved in TF-IDF sample queries, as computed by Example 7-4

Document tf(mr.) tf(green) tf(the) tf(plant)

corpus['a'] 0.1053 0.1053 1.1053 0

corpus['b'] 0 0.1111 0 0.1111

corpus['c'] 0 0.0625 0 0.0625

 idf(mr.) idf(green) idf(the) idf(plant)

corpus['a'] 2.0986 1.0 2.099 1.4055

corpus['b'] 2.0986 1.0 2.099 1.4055

corpus['c'] 2.0986 1.0 2.099 1.4055

 tf-idf(mr.) tf-idf(green) tf-idf(the) tf-idf(plant)

corpus['a'] 0.1053 0.1053 0.1053 0

corpus['b'] 0 0.1111 0 0.1111

corpus['c'] 0 0.0625 0 0.0625

The same results for each query are shown in Table 7-4, with the TF-IDF values summed
on a per-document basis.

Table 7-4. Summed TF-IDF values for sample queries as computed by Example 7-4

Query corpus['a'] corpus['b'] corpus['c']

green 0.1053 0.1111 0.0625

Mr. Green 0.1053 + 0.1053 = 0.2105 0 + 0.1111 = 0.1111 0 + 0.0625 = 0.0625

the green plant 0.1053 + 0.1053 + 0 =
0.2105

0 + 0.1111 + 0.1111 =
0.2222

0 + 0.0625 + 0.0625 =
0.1250

From a qualitative standpoint, the query results make reasonable sense. The
corpus['b'] document is the winner for the query “green”, with corpus['a'] just a hair
behind. In this case, the deciding factor was the length of corpus['b'] being much
smaller than corpus['a']: the normalized TF score tipped in favor of corpus['b'] for
its one occurrence of “green”, even though “Green” appeared in corpus['a'] two times.
Since “green” appears in all three documents, the net effect of the IDF term in the
calculations was a wash. Do note, however, that if we had returned 0.0 instead of 1.0

214 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

for IDF calculations, as is done in some implementations, the TF-IDF scores for “green”
would have been 0.0 for all three documents. Depending on the particular situation, it
may be better to return 0.0 for the IDF scores rather than 1.0. For example, if you had
100,000 documents and “green” appeared in all of them, you’d almost certainly con-
sider it to be a stopword and want to remove its effects in a query entirely.

A finer point to observe is that the sample implementation provided in Example 7-4
adjusts the IDF score by adding a value of 1.0 to the logarithm calculation, for the
purposes of illustration and because we’re dealing with a trivial document set. Without
the 1.0 adjustment in the calculation, it would be possible to have the idf function
return values that are less than 1.0, which would result in two fractions being multiplied
in the TF-IDF calculation. Since multiplying two fractions together results in a value
smaller than either of them, this turns out to be an easily overlooked edge case in the
TF-IDF calculation. Recall that the intuition behind the TF-IDF calculation is that we’d
like to be able to multiply two terms in a way that consistently produces larger TF-IDF
scores for more-relevant queries than for less-relevant queries.

Querying Buzz Data with TF-IDF
Let’s apply TF-IDF to the Buzz data we collected earlier and see how it works out as a
tool for querying the data. NLTK provides some abstractions that we can use instead
of rolling our own, so there’s actually very little to do now that you understand the
underlying theory. The listing in Example 7-5 assumes you saved the Buzz data as a
JSON file, and it allows you to pass in multiple query terms that are used to score the
documents by relevance.

Example 7-5. Querying Google Buzz data with TF-IDF (buzz__tf_idf_nltk.py)

-*- coding: utf-8 -*-

import sys
import json
import nltk

Load in unstructured data from wherever you've saved it

BUZZ_DATA = sys.argv[1]
buzz_data = json.loads(open(BUZZ_DATA).read())

QUERY_TERMS = sys.argv[2:]

all_posts = [post['content'].lower().split() for post in buzz_data]

Provides tf/idf/tf_idf abstractions

tc = nltk.TextCollection(all_posts)

relevant_posts = []

for idx in range(len(all_posts)):

Text Mining Fundamentals | 215

 score = 0
 for term in [t.lower() for t in QUERY_TERMS]:
 score += tc.tf_idf(term, all_posts[idx])
 if score > 0:
 relevant_posts.append({'score': score, 'title': buzz_data[idx]['title'],
 'link': buzz_data[idx]['link']})

Sort by score and display results

relevant_posts = sorted(relevant_posts, key=lambda p: p['score'], reverse=True)
for post in relevant_posts:
 print post['title']
 print '\tLink: %s' % (post['link'],)
 print '\tScore: %s' % (post['score'],)

Sample query results for “gov 2.0” on Tim O’Reilly’s Buzz posts are shown in Exam-
ple 7-6.

Example 7-6. Sample results from Example 7-5

Flattered but somewhat bemused by the metrics that name me as the most influential ...
 Link: http://www.google.com/buzz/107033731246200681024/C62oDoX5oYZ
 Score: 0.0224532639011
Interesting headline on AlleyInsider this morning. "Whoa! Did The Nook Have Better ...
 Link: http://www.google.com/buzz/107033731246200681024/hJLh5pf62Hf
 Score: 0.0128109579108
The Importance of Defaults I've been pushing the idea that one of the big lessons ...
 Link: http://www.google.com/buzz/107033731246200681024/C1Yh6MLmDeS
 Score: 0.0075401637989

Given a search term, being able to narrow in on three Buzz posts ranked by relevance
out of nearly 50 is certainly a step in the right direction. Try out some other queries
and qualitatively review the results to see for yourself how well the TF-IDF metric
works, keeping in mind that the absolute values of the scores aren’t really important—
it’s the ability to find and sort documents by relevance that matters. Then, begin to
ponder the gazillion ways that you could tune or augment this metric to be even more
effective. (After all, every data hacker has to complete this exercise at some point in
life.) One obvious improvement that’s left as an exercise for the reader is to stem verbs
so that variations in tense, grammatical role, etc. resolve to the same stem and can be
more accurately accounted for in similarity calculations. The nltk.stem module pro-
vides easy-to-use implementations for several common stemming algorithms.

Finding Similar Documents
Once you’ve queried and discovered documents of interest, one of the next things you
might want to do is find similar documents (see Figure 7-4). Whereas TF-IDF can
provide the means to narrow down a corpus based on search terms, cosine similarity
is one of the most common techniques for comparing documents to one another, which
is the essence of finding a similar document. An understanding of cosine similarity

216 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

requires a brief introduction to vector space models, which is the topic of the next
section.

Figure 7-4. Once you’ve found the document you’re looking for, many search engines provide a “Find
Similar” capability

The Theory Behind Vector Space Models and Cosine Similarity
While it has been emphasized that TF-IDF models documents as unordered collections
of words, another convenient way to model documents is with a model called a vector
space. The basic theory behind a vector space model is that you have a large multidi-
mensional space that contains one vector for each document, and the distance between
any two vectors indicates the similarity of the corresponding documents. One of the
most beautiful things about vector space models is that you can also represent a query
as a vector and find the most relevant documents for the query by finding the document
vectors with the shortest distance to the query vector. Although it’s virtually impossible
to do this subject justice in a short section, it’s important to have a basic understanding
of vector space models if you have any interest at all in text mining or the IR field. If
you’re not interested in the background theory and want to jump straight into imple-
mentation details on good faith, feel free to skip ahead to the next section.

This section assumes a basic understanding of trigonometry. If your
trigonometry skills are a little rusty, consider this section a great oppor-
tunity to brush up on high school math.

First, it might be helpful to clarify exactly what is meant by the term “vector,” since
there are so many subtle variations associated with it across various fields of study.
Generally speaking, a vector is a list of numbers that expresses both a direction relative
to an origin and a magnitude, which is the distance from that origin. A vector can very
naturally be represented as a line segment between the origin and a point in an N-
dimensional space by drawing a line between the origin and the point. To illustrate,
imagine a document that is defined by only two terms (“Open”, “Web”), with a cor-
responding vector of (0.45, 0.67), where the values in the vector are values such as

Finding Similar Documents | 217

TF-IDF scores for the terms. In a vector space, this document could be represented in
two dimensions by a line segment extending from the origin at (0,0) to the point at
(0.45, 0.67). In reference to an x/y plane, the x-axis would represent “Open”, the y-
axis would represent “Web”, and the vector from (0,0) to (0.45, 0.67) would represent
the document in question. However, interesting documents generally contain hundreds
of terms at a minimum, but the same fundamentals apply for modeling documents in
these higher-dimensional spaces; it’s just harder to visualize.

Try making the transition from visualizing a document represented by a vector with
two components to a document represented by three dimensions, such as (“Open”,
“Web”, “Government”). Then consider taking a leap of faith and accepting that al-
though it’s hard to visualize, it is still possible to have a vector represent additional
dimensions that you can’t easily sketch out or see. If you’re able to do that, you should
have no problem believing the same vector operations that can be applied to a 2-
dimensional space can be equally as well applied to a 10-dimensional space or a 367-
dimensional space. Figure 7-5 shows an example vector in 3-dimensional space.

Figure 7-5. An example vector with the value (–3, –2, 5) plotted in 3D space

Given that it’s possible to model documents as term-centric vectors, with each term in
the document represented by its corresponding TF-IDF score, the task then is to de-
termine what metric best represents the similarity between two documents. As it turns
out, the cosine of the angle between any two vectors is a valid metric for comparing
them and is known as the cosine similarity of the vectors. Although perhaps not yet
intuitive, years of scientific research have demonstrated that computing the cosine
similarity of documents represented as term vectors is a very effective metric. (It does
suffer from many of the same problems as TF-IDF, though; see “Before You Go Off
and Try to Build a Search Engine…” on page 235 for a very brief synopsis.) Building

218 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

up a rigorous proof of the details behind the cosine similarity metric would be beyond
the scope of this book, but the gist is that the cosine of the angle between any two
vectors indicates the similarity between them and is equivalent to the dot product of
their unit vectors. Intuitively, it might be helpful to consider that the closer two vectors
are to one another, the smaller the angle between them will be, and thus the larger the
cosine of the angle between them will be. Two identical vectors would have an angle
of 0 degrees and a similarity metric of 1.0, while two vectors that are orthogonal to one
another would have an angle of 90 degrees and a similarity metric of 0.0. The following
sketch attempts to demonstrate:

Recalling that a unit vector has a length of 1.0 (by definition), the beauty of computing
document similarity with unit vectors is that they’re already normalized against what
might be substantial variations in length. Given that brief math lesson, you’re probably
ready to see some of this in action. That’s what the next section is all about.

Clustering Posts with Cosine Similarity
If you don’t care to remember anything else from the previous section, just remember
this: to compute the similarity between two documents, you really just need to produce
a term vector for each document and compute the dot product of the unit vectors for
those documents. Conveniently, NLTK exposes the nltk.cluster.util.cosine_dis
tance(v1,v2) function for computing cosine similarity, so it really is pretty straightfor-
ward to compare documents. As Example 7-7 shows, all of the work involved is in
producing the appropriate term vectors; in short, it computes term vectors for a given
pair of documents by assigning TF-IDF scores to each component in the vectors. Be-
cause the exact vocabularies of the two documents are probably not identical, however,
placeholders with a value of 0.0 must be left in each vector for words that are missing
from the document at hand but present in the other one. The net effect is that you end
up with two vectors of identical length with components ordered identically that can
be used to perform the vector operations.

For example, suppose document1 contained the terms (A, B, C) and had the corre-
sponding vector of TF-IDF weights (0.10, 0.15, 0.12), while document2 contained the
terms (C, D, E) with the corresponding vector of TF-IDF weights (0.05, 0.10, 0.09).

Finding Similar Documents | 219

The derived vector for document1 would be (0.10, 0.15, 0.12, 0.0, 0.0), and the derived
vector for document2 would be (0.0, 0.0, 0.05, 0.10, 0.09). Each of these vectors could
be passed into NLTK’s cosine_distance function, which yields the cosine similarity.
Internally, cosine_distance uses the numpy module to very efficiently compute the dot
product of the unit vectors, and that’s the result. Although the code in this section
reuses the TF-IDF calculations that were introduced previously, the exact scoring func-
tion could be any useful metric. TF-IDF (or some variation thereof), however, is quite
common for many implementations and provides a great starting point.

Example 7-7 illustrates an approach for using cosine similarity to find the most similar
document to each document in a corpus of Buzz data. It should apply equally as well
to any other type of unstructured data, such as blog posts, books, etc.

Example 7-7. Finding similar documents using cosine similarity (buzz__cosine_similarity.py)

-*- coding: utf-8 -*-

import sys
import json
import nltk

Load in textual data from wherever you've saved it

BUZZ_DATA = sys.argv[1]
buzz_data = json.loads(open(BUZZ_DATA).read())

all_posts = [post['content'].lower().split() for post in buzz_data]

Provides tf/idf/tf_idf abstractions for scoring

tc = nltk.TextCollection(all_posts)

Compute a term-document matrix such that td_matrix[doc_title][term]
returns a tf-idf score for the term in the document

td_matrix = {}
for idx in range(len(all_posts)):
 post = all_posts[idx]
 fdist = nltk.FreqDist(post)

 doc_title = buzz_data[idx]['title']
 link = buzz_data[idx]['link']
 td_matrix[(doc_title, link)] = {}

 for term in fdist.iterkeys():
 td_matrix[(doc_title, link)][term] = tc.tf_idf(term, post)

Build vectors such that term scores are in the same positions...

distances = {}
for (title1, link1) in td_matrix.keys():

 distances[(title1, link1)] = {}

220 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

 (max_score, most_similar) = (0.0, (None, None))

 for (title2, link2) in td_matrix.keys():

 # Take care not to mutate the original data structures
 # since we're in a loop and need the originals multiple times

 terms1 = td_matrix[(title1, link1)].copy()
 terms2 = td_matrix[(title2, link2)].copy()

 # Fill in "gaps" in each map so vectors of the same length can be computed

 for term1 in terms1:
 if term1 not in terms2:
 terms2[term1] = 0

 for term2 in terms2:
 if term2 not in terms1:
 terms1[term2] = 0

 # Create vectors from term maps

 v1 = [score for (term, score) in sorted(terms1.items())]
 v2 = [score for (term, score) in sorted(terms2.items())]

 # Compute similarity among documents

 distances[(title1, link1)][(title2, link2)] = \
 nltk.cluster.util.cosine_distance(v1, v2)

 if link1 == link2:
 continue
 if distances[(title1, link1)][(title2, link2)] > max_score:
 (max_score, most_similar) = (distances[(title1, link1)][(title2,
 link2)], (title2, link2))

 print '''Most similar to %s (%s)
\t%s (%s)
\tscore %s
''' % (title1, link1,
 most_similar[0], most_similar[1], max_score)

If you’ve found this discussion of cosine similarity interesting, recall that the best part
is that querying a vector space is the very same operation as computing the similarity
between documents, except that instead of comparing just document vectors, you compare
your query vector and the document vectors. In terms of implementation, that means
constructing a vector containing your query terms and comparing it to each document
in the corpus. Be advised, however, that the approach of directly comparing a query
vector to every possible document vector is not a good idea for even a corpus of modest
size. You’d need to make some very good engineering decisions involving the appro-
priate use of indexes to achieve a scalable solution. (Just a little something to consider
before you go off and build the next great search engine.)

Finding Similar Documents | 221

Visualizing Similarity with Graph Visualizations
Like just about everything else in this book, there’s certainly more than one way to
visualize the similarity between items. The approach introduced in this section is to use
graph-like structures, where a link between documents encodes a measure of the sim-
ilarity between them. This situation presents an excellent opportunity to introduce
more visualizations from Protovis, a cutting-edge HTML5-based visualization toolkit
under development by the Stanford Visualization Group. Protovis is specifically de-
signed with the interests of data scientists in mind, offers a familiar declarative syntax,
and achieves a nice middle ground between high-level and low-level interfaces. A min-
imal (uninteresting) adaptation to Example 7-7 is all that’s needed to emit a collection
of nodes and edges that can be used to produce visualizations of our data examples
gallery. A nested loop can compute the similarity between the working sample of Buzz
data from this chapter, and linkages between items may be determined based upon a
simple statistical thresholding criterion. The details associated with munging the data
and tweaking the Protovis example templates won’t be presented here, but the code is
available for download online.

The code produces the arc diagram presented in Figure 7-6 and the matrix diagram in
Figure 7-7. The arc diagram produces arcs between nodes if there is a linkage between
them, scales nodes according to their degree, and sorts the nodes such that clutter is
minimized and it’s easy to see which of them have the highest number of connections.
Titles are displayed vertically, but they could be omitted because a tool tip displays the
title when the mouse hovers over a node. Clicking on a node opens a new browser
window that points to the Buzz activity represented by that node. Additional bells and
whistles, such as event handlers, coloring the arcs based on the similarity scores, and
tweaking the parameters for this visualization, would not be very difficult to implement
(and a fun way to spend a rainy day).

A complementary display to an arc diagram is a matrix diagram, with the color intensity
of each cell varying as a function of the strength of the correlation of similarity score;
a darker cell represents higher similarity. The diagonal in the matrix in Figure 7-7 has
been omitted since we’re not interested in having our eye drawn to those cells, even
though the similarity scores for the diagonal would be perfect. Hovering over a cell
displays a tool tip with the similarity score. An advantage of matrix diagrams is that
there’s no potential for messy overlap between edges that represent linkages. A com-
monly cited disadvantage of arc diagrams is that path finding is difficult, but in this
particular situation, path finding isn’t that important, and besides, it can still be ac-
complished if desired. Depending on your personal preferences and the data you’re
trying to visualize, either or both of these approaches could be appropriate.

222 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

Figure 7-7. A Protovis matrix diagram displaying linkages between Buzz activities

Figure 7-6. A Protovis arc diagram displaying the linkages between Buzz activities

Finding Similar Documents | 223

Buzzing on Bigrams
As previously mentioned, one issue that is frequently overlooked in unstructured text
processing is the tremendous amount of information gained when you’re able to look
at more than one token at a time, because so many concepts we express are phrases
and not just single words. For example, if someone were to tell you that a few of the
most common terms in a post are “open”, “source”, and “government”, could you
necessarily say that the text is probably about “open source”, “open government”, both,
or neither? If you had a priori knowledge of the author or content, you could probably
make a good guess, but if you were relying totally on a machine to try to classify the
nature of a document as being about collaborative software development or transfor-
mational government, you’d need to go back to the text and somehow determine which
of the words most frequently occur after “open”—i.e., you’d like to find the colloca-
tions that start with the token “open”.

Recall from Chapter 6 that an n-gram is just a terse way of expressing each possible
consecutive sequence of n tokens from a text, and it provides the foundational data
structure for computing collocations. There are always (n-1) n-grams for any value of
n, and if you were to consider all of the bigrams (2-grams) for the sequence of tokens
["Mr.", "Green", "killed", "Colonel", "Mustard"], you’d have four possibilities:
[("Mr.", "Green"), ("Green", "killed"), ("killed", "Colonel"), ("Colonel", "Mus
tard")]. You’d need a larger sample of text than just our sample sentence to determine
collocations, but assuming you had background knowledge or additional text, the next
step would be to statistically analyze the bigrams in order to determine which of them
are likely to be collocations.

It’s worth noting that the storage necessary for persisting an n-gram
model requires space for (T–1)*n tokens (which is practically T*n),
where T is the number of tokens in question and n is defined by the size
of the desired n-gram. As an example, assume a document contains
1,000 tokens and requires around 8 KB of storage. Storing all bigrams
for the text would require roughly double the original storage, or 16 KB,
as you would be storing 999*2 tokens plus overhead. Storing all trigrams
for the text (998*3 tokens plus overhead) would require roughly triple
the original storage, or 24 KB. Thus, without devising specialized data
structures or compression schemes, the storage costs for n-grams can
be estimated as n times the original storage requirement for any value
of n.

n-grams are very simple yet very powerful as a technique for clustering commonly co-
occurring words. If you compute all of the n-grams for even a small value of n, you’re
likely to discover that some interesting patterns emerge from the text itself with no
additional work required. For example, in considering the bigrams for a sufficiently
long text, you’re likely to discover the proper names, such as “Mr. Green” and “Colonel
Mustard”, concepts such as “open source” or “open government”, and so forth. Similar

224 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

patterns emerge when you consider frequent trigrams and n-grams for values of n
slightly larger than three. In fact, computing bigrams in this way produces essentially
the same results as the collocations function that you ran in an earlier interpreter
session, except that some additional statistical analysis takes into account the use of
rare words. As you already know from the interpreter session we looked at earlier in
this chapter (Example 7-2), NLTK takes care of most of the effort in computing n-
grams, discovering collocations from text, discovering the context in which a token has
been used, etc. Example 7-8 demonstrates.

Example 7-8. Using NLTK to compute bigrams and collocations for a sentence

>>> import nltk
>>> nltk.ngrams("Mr. Green killed Colonel Mustard in the study with the \
... candlestick. Mr. Green is not a very nice fellow.".split(), 2)
[('Mr.', 'Green'), ('Green', 'killed'), ('killed', 'Colonel'),
 ('Colonel', 'Mustard'), ('Mustard', 'in'), ('in', 'the'),
 ('the', 'study'), ('study', 'with'), ('with', 'the'),
 ('the', 'candlestick.'), ('candlestick.', 'Mr.'), ('Mr.', 'Green'),
 ('Green', 'is'), ('is', 'not'), ('not', 'a'), ('a', 'very'),
 ('very', 'nice'), ('nice', 'fellow.')]
>>> txt = nltk.Text("Mr. Green killed Colonel Mustard in the study with the\
... candletick. Mr. Green is not a very nice fellow.".split())
>>> txt.collocations()
Building collocations list
Mr. Green

Recall that the only drawback to using built-in demo functionality such as
nltk.Text.collocations is that these functions don’t return data structures that you
can store and manipulate. Whenever you run into such a situation, just take a look at
the source code, which is usually pretty easy to adapt for your own purposes. Exam-
ple 7-9 illustrates how you could compute the collocations and concordance indexes
for a collection of tokens and maintain control of the results.

Example 7-9. Using NLTK to compute collocations in a similar manner to the nltk.Text.collocations
demo functionality (buzz__collocations.py)

-*- coding: utf-8 -*-

import sys
import json
import nltk

Load in human readable text from wherever you've saved it

BUZZ_DATA = sys.argv[1]
N = 25
buzz_data = json.loads(open(BUZZ_DATA).read())

all_tokens = [token for post in buzz_data for token in post['content'
].lower().split()]

finder = nltk.BigramCollocationFinder.from_words(all_tokens)

Buzzing on Bigrams | 225

finder.apply_freq_filter(2)
finder.apply_word_filter(lambda w: w in nltk.corpus.stopwords.words('english'))
scorer = nltk.metrics.BigramAssocMeasures.jaccard
collocations = finder.nbest(scorer, N)

for collocation in collocations:
 c = ' '.join(collocation)
 print c

In short, the implementation loosely follows NLTK’s collocations demo function. It
filters out bigrams that don’t appear more than a minimum number of times (two, in
this case) and then applies a scoring metric to rank the results. In this instance,
the scoring function is the well-known Jaccard Index, as defined by
nltk.metrics.BigramAssocMeasures.jaccard. A contingency table is used by the
BigramAssocMeasures class to rank the co-occurrence of terms in any given bigram as
compared to the possibilities of other words that could have appeared in the bigram.
Conceptually, the Jaccard Index measures similarity of sets, and in this case, the sample
sets are specific comparisons of bigrams that appeared in the text. The details of how
contingency tables and Jaccard values are calculated is arguably an advanced topic, but
the next section, “How the Collocation Sausage Is Made: Contingency Tables and
Scoring Functions” on page 228, provides an extended discussion of those details since
they’re critical to a good understanding of collocation detection.

In the meantime, though, let’s examine Example 7-10. This example shows some out-
put from Tim’s Buzz feed that should make it pretty apparent that returning scored
bigrams is immensely more powerful than only returning tokens because of the addi-
tional context that grounds the terms in meaning.

Example 7-10. Sample results from Example 7-9

annalee saxenian
nexus one.
cafe standards
certainly true
eric schmidt
olive oil
open source
1/4 cup
free software
andy rubin
front page
mr. o’reilly
o’reilly said.
steve jobs
tech support
long term
web 2.0
"mr. o’reilly
personal brand
came back
cloud computing,
meaningful use

226 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

Keeping in mind that no special heuristics or tactics that could have inspected the text
for proper names based on Title Case were employed, it’s actually quite amazing that
so many proper names and common phrases were sifted out of the data. There’s still a
certain amount of inevitable noise in the results because we have not yet made any
effort to clean punctuation from the tokens, but for the small amount of work we’ve
put in, the results are really quite good. This might be a good time to mention that even
if reasonably good natural language processing capabilities were employed, it might
still be difficult to eliminate all the noise from the results of textual analysis. Getting
comfortable with the noise and finding heuristics to control it is a good idea until you
get to the point where you’re willing to make a significant investment in obtaining the
perfect results that a well-educated human would be able to pick out from the text.

Hopefully, the primary observation you’re making at this point is that with very little
effort and time invested, we’ve been able to use another very basic technique to draw
out some pretty powerful meaning from some free text data, and the results seem to be
pretty representative of what we already suspect should be true. This is encouraging,
because it suggests that applying the same technique to anyone else’s Buzz (or any other
kind of unstructured text, for that matter) would potentially be just as informative,
giving you a quick glimpse into key items that are being discussed. And just as impor-
tantly, while the data in this case probably confirms a few things you may already know
about Tim O’Reilly, you may have learned a couple of new things, too—one of which
is that he apparently shares a recipe every now and then, as evidenced by “olive oil”
and “1/4 cup” in the listing of results. While it would be easy enough to use the con-
cordance, a regular expression, or even the Python string type’s built-in find method
to find posts relevant to “olive oil”, let’s instead take advantage of the code we devel-
oped in Example 7-5 and use TF-IDF to query for “olive oil.” What comes back? Survey
says:

Making cauliflower pancakes with marjoram, and onion jam, for a valentine's day...
 Link: http://www.google.com/buzz/107033731246200681024/h1tciv2psSP
 Score: 0.0437666231649

And there you have it. The “olive oil” query leads us to a recipe for scrumptious cau-
liflower pancakes. You’ve effectively started with a nominal (if that) understanding of
the text, narrowed in on some interesting topics using collection analysis, and searched
the text for one of those interesting topics using TF-IDF. There’s no reason you couldn’t
also use cosine similarity at this point to find the most similar post to the one about
cauliflower pancakes (or whatever it is that you’re keen to investigate).

Buzzing on Bigrams | 227

How the Collocation Sausage Is Made: Contingency Tables and Scoring
Functions

This section dives into some of the more technical details of how Bigram
CollocationFinder—the Jaccard scoring function from Example 7-9—
works. If this is your first reading of the chapter or you’re not interested
in these details, feel free to skip this section and come back to it later.

A common data structure that’s used to compute metrics related to bigrams is the
contingency table. The purpose of a contingency table is to compactly express the fre-
quencies associated with the various possibilities for appearance of different terms of
a bigram. Take a look at the bold entries in Table 7-5, where token1 expresses the
existence of token1 in the bigram, and ~token1 expresses that token1 does not exist in
the bigram.

Table 7-5. Contingency table example—values in italics represent “marginals,” and values in bold
represent frequency counts of bigram variations

 token1 ~token1

token2 frequency(token1,
token2)

frequency(~token1,
token2)

frequency(*, token2)

~token2 frequency(token1,
~token2)

frequency(~token1,
~token2)

 frequency(token1, *) frequency(*, *)

Although there are a few details associated with which cells are significant for which
calculations, hopefully it’s not difficult to see that the four middle cells in the table
express the frequencies associated with the appearance of various tokens in the bigram.
The values in these cells can compute different similarity metrics that can be used to
score and rank bigrams in order of likely significance, as was the case with the previously
introduced Jaccard Index, which we’ll dissect in just a moment. First, however, let’s
briefly discuss how the terms for the contingency table are computed.

The way that the various entries in the contingency table are computed is directly tied
to which data structures you have precomputed or otherwise have available. If you
assume that you only have available a frequency distribution for the various bigrams
in the text, the way to calculate frequency(token1, token2) is a direct lookup, but what
about frequency(~token1, token2)? With no other information available, you’d need to
scan every single bigram for the appearance of token2 in the second slot and subtract
frequency(token1, token2) from that value. (Take a moment to convince yourself that
this is true if it isn’t obvious.)

However, if you assume that you have a frequency distribution available that counts
the occurrences of each individual token in the text (the text’s unigrams) in addition

228 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

to a frequency distribution of the bigrams, there’s a much less expensive shortcut you
can take that involves two lookups and an arithmetic operation. Subtract the number
of times that token2 appeared as a unigram from the number of times the bigram
(token1, token2) appeared, and you’re left with the number of times the bigram (~to-
ken1, token2) appeared. For example, if the bigram (“mr.”, “green”) appeared three
times and the unigram (“green”) appeared seven times, it must be the case that the
bigram (~“mr.”, “green”) appeared four times (where ~“mr.” literally means “any token
other than ‘mr.’”). In Table 7-5, the expression frequency(*, token2) represents the un-
igram token2 and is referred to as a marginal because it’s noted in the margin of the
table as a shortcut. The value for frequency(token1, *) works the same way in helping
to compute frequency(token1, ~token2), and the expression frequency(*, *) refers to any
possible unigram and is equivalent to the total number of tokens in the text. Given
frequency(token1, token2), frequency(token1, ~token2), and frequency(~token1, to-
ken2), the value of frequency(*, *) is necessary to calculate frequency(~token1, ~token2).

Although this discussion of contingency tables may seem somewhat tangential, it’s an
important foundation for understanding different scoring functions. For example, con-
sider the Jaccard Index. Conceptually, it expresses the similarity of two sets and is
defined by:

In other words, that’s the number of items in common between the two sets divided
by the total number of distinct items in the combined sets. It’s worth taking a moment
to ponder this simple yet effective calculation. If Set1 and Set2 were identical, the union
and the intersection of the two sets would be equivalent to one another, resulting in a
ratio of 1.0. If both sets were completely different, the numerator of the ratio would be
0, resulting in a value of 0.0. Then there’s everything else in between. The Jaccard Index
as applied to a particular bigram expresses the ratio between the frequency of a par-
ticular bigram and the sum of the frequencies with which any bigram containing a term
in the bigram of interest appears. One interpretation of that metric might be that the
higher the ratio is, the more likely it is that (token1, token2) appears in the text, and
hence, the more likely it is that the collocation “token1 token2” expresses a meaningful
concept.

The selection of the most appropriate scoring function is usually determined based
upon knowledge about the characteristics of the underlying data, some intuition, and
sometimes a bit of luck. Most of the association metrics defined in nltk.metrics.asso
ciations are discussed in Chapter 5 of Christopher Manning and Hinrich Schuetze’s
Foundations of Statistical Natural Language Processing (MIT Press), which is conven-
iently available online and serves as a useful reference for the descriptions that follow.
An in-depth discussion of these metrics is outside the scope of this book, but the pro-
motional chapter just mentioned provides a detailed account with in-depth examples.
The Jaccard Index, Dice’s coefficient, and the likelihood ratio are good starting points

Buzzing on Bigrams | 229

if you find yourself needing to build your own collocation detector. They are described,
along with some other key terms, in the list that follows:

Raw frequency
As its name implies, raw frequency is the ratio expressing the frequency of a par-
ticular n-gram divided by the frequency of all n-grams. It is useful for examining
the overall frequency of a particular collocation in a text.

Jaccard Index
The Jaccard Index is a ratio that measures the similarity between sets. As applied
to collocations, it is defined as the frequency of a particular collocation divided by
the total number of collocations that contain at least one term in the collocation
of interest. It is useful for determining the likelihood of whether the given terms
actually form a collocation, as well as ranking the likelihood of probable colloca-
tions. Using notation consistent with previous explanations, this formulation
would be mathematically defined as:

Dice’s coefficient
Dice’s coefficient is extremely similar to the Jaccard Index. The fundamental dif-
ference is that it weights agreements among the sets twice as heavily as Jaccard. It
is defined mathematically as:

Mathematically, it can be shown fairly easily that:

You might choose to use this metric instead of the Jaccard Index when it’s more
important to bias the score in favor of instances in which the collocation “token1
token2” appears.

Likelihood ratio
This metric is yet another approach to hypothesis testing that is used to measure
the independence between terms that may form a collocation. It’s been shown to
be a more appropriate approach for collocation discovery than the chi-square test
in the general case, and it works well on data that includes many infrequent col-
locations. The particular calculations involved in computing likelihood estimates
for collocations as implemented by NLTK assume a binomial distribution, where
the parameters governing the distribution are calculated based upon the number
of occurrences of collocations and constituent terms.

230 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

Chi-square
Like Student’s t-score, this metric is commonly used for testing independence be-
tween two variables and can be used to measure whether two tokens are colloca-
tions based upon Pearson’s chi-square test of statistical significance. Generally
speaking, the differences obtained from applying the t-test and chi-square test are
not substantial. The advantage of chi-square testing is that unlike t-testing, it does
not assume an underlying normal distribution; for this reason, chi-square testing
is more commonly used.

Student’s t-score
Traditionally, Student’s t-score has been used for hypothesis testing, and as applied
to n-gram analysis, t-scores can be used for testing the hypothesis of whether two
terms are collocations. The statistical procedure for this calculation uses a standard
distribution per the norm for t-testing. An advantage of the t-score values as op-
posed to raw frequencies is that a t-score takes into account the frequency of a
bigram relative to its constituent components. This characteristic facilitates rank-
ing the strengths of collocations. A criticism of the t-test is that it necessarily as-
sumes that the underlying probability distribution for collocations is normal,
which is not often the case.

Pointwise Mutual Information
Pointwise Mutual Information (PMI) is a measure of how much information is
gained about a particular word if you also know the value of a neighboring word.
To put it another way, how much one word can tell you about another. Ironically
(in the context of the current discussion), the calculations involved in computing
the PMI lead it to score high-frequency words lower than low-frequency words,
which is opposite of the desired effect. Therefore, it is a good measure of inde-
pendence but not a good measure of dependence (i.e., a less than ideal choice for
scoring collocations). It has also been shown that sparse data is a particular stum-
bling block for PMI scoring, and that other techniques such as the likelihood ratio
tend to outperform it.

Tapping into Your Gmail
Google Buzz is a great source of clean textual data that you can mine, but it’s just one
of many starting points. Since this chapter showcases Google technology, this section
provides a brief overview of how to tap into your Gmail data so that you can mine the
text of what may be many thousands of messages in your inbox. If you haven’t read
Chapter 3 yet, recall that it’s devoted to mail analysis but focuses primarily on the
structured data features of mail messages, such as the participants in mail threads. The
techniques outlined in that chapter could be easily applied to Gmail messages, and vice
versa.

Tapping into Your Gmail | 231

Accessing Gmail with OAuth
In early 2010, Google announced OAuth access to IMAP and SMTP in Gmail. This was
a significant announcement because it officially opened the door to “Gmail as a plat-
form,” enabling third-party developers to build apps that can access your Gmail data
without you needing to give them your username and password. This section won’t get
into the particular nuances of how Xoauth, Google’s particular implementation of
OAuth, works (see “No, You Can’t Have My Password” on page 85 for a terse intro-
duction to OAuth). Instead, it focuses on getting you up and running so that you can
access your Gmail data, which involves just a few simple steps:

• Select the “Enable IMAP” option under the “Forwarding and POP/IMAP” tab in
your Gmail Account Settings.

• Visit the Google Mail Xoauth Tools wiki page, download the xoauth.py command-
line utility, and follow the instructions to generate an OAuth token and secret for
an “anonymous” consumer.§

• Install python-oauth2 via easy_install oauth2 and use the template in Exam-
ple 7-11 to establish a connection.

Example 7-11. A template for connecting to IMAP using OAuth (buzz__gmail_template.py)

-*- coding: utf-8 -*-

import sys
import oauth2 as oauth
import oauth2.clients.imap as imaplib

See http://code.google.com/p/google-mail-xoauth-tools/wiki/
XoauthDotPyRunThrough for details on xoauth.py

OAUTH_TOKEN = sys.argv[1] # obtained with xoauth.py
OAUTH_TOKEN_SECRET = sys.argv[2] # obtained with xoauth.py
GMAIL_ACCOUNT = sys.argv[3] # example@gmail.com

url = 'https://mail.google.com/mail/b/%s/imap/' % (GMAIL_ACCOUNT,)

Standard values for GMail's Xoauth
consumer = oauth.Consumer('anonymous', 'anonymous')
token = oauth.Token(OAUTH_TOKEN, OAUTH_TOKEN_SECRET)

conn = imaplib.IMAP4_SSL('imap.googlemail.com')
conn.debug = 4 # set to the desired debug level
conn.authenticate(url, consumer, token)

conn.select('INBOX')

§ If you’re just hacking your own Gmail data, using the anonymous consumer credentials generated from
xoauth.py is just fine; you can always register and create a “trusted” client application when it becomes
appropriate to do so.

232 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

access your INBOX data

Once you’re able to access your mail data, the next step is to fetch and parse some
message data.

Fetching and Parsing Email Messages
The IMAP protocol is a fairly finicky and complex beast, but the good news is that you
don’t have to know much of it to search and fetch mail messages. imaplib-compliant
examples are readily available online, and one of the more common operations you’ll
want to do is search for messages. There are various ways that you can construct an
IMAP query. An example of how you’d search for messages from a particular user is
conn.search(None, '(FROM "me")'), where None is an optional parameter for the char-
acter set and '(FROM "me")' is a search command to find messages that you’ve sent
yourself (Gmail recognizes “me” as the authenticated user). A command to search for
messages containing “foo” in the subject would be '(SUBJECT "foo")', and there are
many additional possibilities that you can read about in Section 6.4.4 of RFC 3501,
which defines the IMAP specification. imaplib returns a search response as a tuple that
consists of a status code and a string of space-separated message IDs wrapped in a list,
such as ('OK', ['506 527 566']). You can parse out these ID values to fetch RFC 822-
compliant mail messages, but alas, there’s additional work involved to parse the content
of the mail messages into a usable form. Fortunately, with some minimal adaptation
we can reuse the code from Example 3-3, which used the email module to parse mes-
sages into a more readily usable form, to take care of the uninteresting email-parsing
cruft that’s necessary to get usable text from each message. Example 7-12 illustrates.

Example 7-12. A simple workflow for extracting the bodies of Gmail messages returned from a search
(buzz__search_and_parse_mail.py)

-*- coding: utf-8 -*-

import oauth2 as oauth
import oauth2.clients.imap as imaplib

import os
import sys
import email
import quopri
import json
from BeautifulSoup import BeautifulSoup

See http://code.google.com/p/google-mail-xoauth-tools/wiki/
XoauthDotPyRunThrough for details on xoauth.py

OAUTH_TOKEN = sys.argv[1] # obtained with xoauth.py
OAUTH_TOKEN_SECRET = sys.argv[2] # obtained with xoauth.py
GMAIL_ACCOUNT = sys.argv[3] # example@gmail.com
Q = sys.argv[4]

Tapping into Your Gmail | 233

url = 'https://mail.google.com/mail/b/%s/imap/' % (GMAIL_ACCOUNT,)

Authenticate with OAuth

Standard values for GMail's xoauth implementation
consumer = oauth.Consumer('anonymous', 'anonymous')
token = oauth.Token(OAUTH_TOKEN, OAUTH_TOKEN_SECRET)
conn = imaplib.IMAP4_SSL('imap.googlemail.com')
conn.debug = 4
conn.authenticate(url, consumer, token)

Select a folder of interest

conn.select('INBOX')

Repurpose scripts from "Mailboxes: Oldies but Goodies"

def cleanContent(msg):

 # Decode message from "quoted printable" format

 msg = quopri.decodestring(msg)

 # Strip out HTML tags, if any are present

 soup = BeautifulSoup(msg)
 return ''.join(soup.findAll(text=True))

def jsonifyMessage(msg):
 json_msg = {'parts': []}
 for (k, v) in msg.items():
 json_msg[k] = v.decode('utf-8', 'ignore')

 # The To, CC, and Bcc fields, if present, could have multiple items
 # Note that not all of these fields are necessarily defined

 for k in ['To', 'Cc', 'Bcc']:
 if not json_msg.get(k):
 continue
 json_msg[k] = json_msg[k].replace('\n', '').replace('\t', '').replace('\r'
 , '').replace(' ', '').decode('utf-8', 'ignore').split(',')

 try:
 for part in msg.walk():
 json_part = {}
 if part.get_content_maintype() == 'multipart':
 continue
 json_part['contentType'] = part.get_content_type()
 content = part.get_payload(decode=False).decode('utf-8', 'ignore')
 json_part['content'] = cleanContent(content)

 json_msg['parts'].append(json_part)

234 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

 except Exception, e:
 sys.stderr.write('Skipping message - error encountered (%s)' % (str(e),))
 finally:
 return json_msg

Consume a query from the user. This example illustrates searching by subject

(status, data) = conn.search(None, '(SUBJECT "%s")' % (Q,))
ids = data[0].split()

messages = []
for i in ids:
 try:
 (status, data) = conn.fetch(i, '(RFC822)')
 messages.append(email.message_from_string(data[0][1]))
 except Exception, e:
 'Print error fetching message %s. Skipping it.' % (i,)

jsonified_messages = [jsonifyMessage(m) for m in messages]

Separate out the text content from each message so that it can be analyzed

content = [p['content'] for m in jsonified_messages for p in m['parts']]

Note: Content can still be quite messy and contain lots of line breaks and other quirks

if not os.path.isdir('out'):
 os.mkdir('out')

filename = os.path.join('out', GMAIL_ACCOUNT.split("@")[0] + '.gmail.json')
f = open(filename, 'w')
f.write(json.dumps(jsonified_messages))
f.close()

print >> sys.stderr, "Data written out to", f.name

Once you’ve successfully parsed out the text from the body of a Gmail message, some
additional work will be required to cleanse the text to the point that it’s suitable for a
nice display or advanced NLP, as illustrated in Chapter 8, but not much effort is re-
quired to get it to the point where it’s clean enough for collocation analysis. In fact, the
results of Example 7-12 can be fed almost directly into Example 7-9 to produce a list
of collocations from the search results. A very interesting visualization exercise would
be to create a graph plotting the strength of linkages between messages based on the
number of bigrams they have in common, as determined by a custom metric.

Before You Go Off and Try to Build a Search Engine…
While this chapter has hopefully given you some good insight into how to extract useful
information from unstructured text, it’s barely scratched the surface of the most fun-
damental concepts, both in terms of theory and engineering considerations. Informa-

Before You Go Off and Try to Build a Search Engine… | 235

tion retrieval is literally a multibillion-dollar industry, so you can only imagine the
amount of combined investment that goes into both the theory and implementations
that work at scale to power search engines such as Google and Yahoo!. This section is
a modest attempt to make sure you’re aware of some of the inherent limitations of TF-
IDF, cosine similarity, and other concepts introduced in this chapter, with the hopes
that it will be beneficial in shaping your overall view of this space.

While TF-IDF is a powerful tool that’s easy to use, our specific implementation of it
has a few important limitations that we’ve conveniently overlooked but that you should
consider. One of the most fundamental is that it treats a document as a bag of words,
which means that the order of terms in both the document and the query itself does
not matter. For example, querying for “Green Mr.” would return the same results as
“Mr. Green” if we didn’t implement logic to take the query term order into account or
interpret the query as a phrase as opposed to a pair of independent terms. But obviously,
the order in which terms appear is very important.

Even if you carry out an n-gram analysis to account for collocations and term ordering,
there’s still the underlying issue that TF-IDF assumes that all tokens with the same text
value mean the same thing. Clearly, however, this need not be the case. Any homonym
of your choice is a counterexample, and there are plenty of them, and even words that
do mean the same thing can connote slightly different meanings depending on the exact
context in which they are used. A key difference in a traditional keyword search tech-
nology based on TF-IDF principles and a more advanced semantic search engine is that
the semantic search engine would necessarily allow you to ground your search terms
in a particular meaning by defining context. For example, you might be able to specify
that the term you are searching for should be interpreted as a person, location, organ-
ization, or other specific type of entity. Being able to ground search terms in specific
contexts is a very active area of research at the moment.

Cosine similarity suffers from many of the same flaws as TF-IDF. It does not take into
account the context of the document or the term order from the n-gram analysis, and
it assumes that terms appearing close to one another in vector space are necessarily
similar, which is certainly not always the case. The obvious counterexample is homo-
nyms, which may mean quite different things but are interpreted as the same term since
they have the same text values. Our particular implementation of cosine similarity also
hinges on TF-IDF scoring as its means of computing the relative importance of words
in documents, so the TF-IDF errors have a cascading effect.

You’ve probably also realized that there can be a lot of pesky details that have to be
managed in analyzing unstructured text, and these details turn out to be pretty
important for state-of-the-art implementations. For example, string comparisons are
case-sensitive, so it’s important to normalize terms so that frequencies can be calculated
as accurately as possible. But blindly normalizing to lowercase, for example, can also
potentially complicate the situation, since the case used in certain words and phrases
can be important. “Mr. Green” and “Web 2.0” are two examples worth considering.
In the case of “Mr. Green”, maintaining the title case in “Green” could potentially be

236 | Chapter 7: Google Buzz: TF-IDF, Cosine Similarity, and Collocations

advantageous since it could provide a useful clue to a query algorithm that it’s not
referring to an adjective and is likely part of a noun phrase. We’ll briefly touch on this
topic again in Chapter 8 when NLP is discussed, since it’s ultimately the context in
which “Green” is being used that is lost with the bag-of-words approach, whereas more
advanced parsing with NLP has the potential to preserve that context.

Another consideration that’s rooted more in our particular implementation than a
general characteristic of TF-IDF itself is that our use of split to tokenize the text may
leave trailing punctuation on tokens that can affect tabulating frequencies. For exam-
ple, in the earlier working example, corpus['b'] ends with the token “study”, which is
not the same as the token “study” that appears in corpus['a'] (the token that someone
would probably be more likely to query). In this instance, the trailing period on the
token affects both the TF and the IDF calculations.

You might consider stemming words so that common variations of the
same word are essentially treated as the same term instead of different
terms. Check out the nltk.stem package for several good stemming
implementations.

Finally, there are plenty of engineering considerations to ponder should you decide to
implement a solution that you plan to take into a production situation. The use of
indexes and caching are critical considerations for obtaining reasonable query times on
even moderately large data sets. The ability to analyze truly massive amounts of textual
data in batch-processing systems such as Hadoop‖, even on reasonably priced cloud
infrastructures such as Amazon’s Elastic Compute Cloud, can be quite expensive and
require the budget of a medium-sized corporation.

Closing Remarks
This chapter introduced some of the fundamentals of IR theory: TF-IDF, cosine simi-
larity, and collocations. Given the immense power of search providers like Google, it’s
easy to forget that these foundational search techniques even exist. However, under-
standing them yields insight into the assumptions and limitations of the commonly
accepted status quo for search, while also clearly differentiating the state-of-the-art
entity-centric techniques that are emerging. (Chapter 8 introduces a fundamental
paradigm shift away from the tools in this chapter and should make the differences
more pronounced than they may seem if you haven’t read that material yet.) If you’d
like to try applying the techniques from this chapter to the Web (in general), you might
want to check out Scrapy, an easy-to-use and mature web scraping and crawling frame-
work.

‖ If Hadoop interests you, you might want to check out Dumbo, a project that allows you to write and run
Hadoop programs in Python.

Closing Remarks | 237

CHAPTER 8

Blogs et al.: Natural Language
Processing (and Beyond)

This chapter is a modest attempt to introduce Natural Language Processing (NLP) and
apply it to the unstructured data in blogs. In the spirit of the prior chapters, it attempts
to present the minimal level of detail required to empower you with a solid general
understanding of an inherently complex topic, while also providing enough of a tech-
nical drill-down that you’ll be able to immediately get to work mining some data. Al-
though we’ve been regularly cutting corners and taking a Pareto-like approach—giving
you the crucial 20% of the skills that you can use to do 80% of the work—the corners
we’ll cut in this chapter are especially pronounced because NLP is just that complex.
No chapter out of any book—or any small multivolume set of books, for that matter,
could possibly do it justice. This chapter is a pragmatic introduction that’ll give you
enough information to do some pretty amazing things, like automatically generating
abstracts from documents and extracting lists of important entities, but we will not
journey very far into topics that would require multiple dissertations to sort out.

Although it’s not absolutely necessary that you have read Chapter 7 before you dive
into this chapter, it’s highly recommended that you do so. A good understanding of
Natural Language Processing presupposes an appreciation and working knowledge of
some of the fundamental strengths and weaknesses of TF-IDF, vector space models,
etc. In that regard, these two chapters have a somewhat tighter coupling than most
other chapters in this book. The specific data source that’s used in this chapter is blogs,
but as was the case in Chapter 7, just about any source of text could be used. Blogs just
happen to be a staple in the social web that are inherently well suited to text mining.
And besides, the line between blog posts and articles is getting quite blurry these days!

NLP: A Pareto-Like Introduction
The opening section of this chapter is mostly an expository discussion that attempts to
illustrate the difficulty of NLP and give you a good understanding of how it differs from

239

the techniques introduced in previous chapters. The section after it, however, gets right
to business with some sample code to get you on your way.

Syntax and Semantics
You may recall from Chapter 7 that perhaps the most fundamental weaknesses of TF-
IDF and cosine similarity are that these models inherently don’t require a deep seman-
tic understanding of the data. Quite the contrary, the examples in that chapter were
able to take advantage of very basic syntax that separated tokens by whitespace to break
an otherwise opaque document into a bag of tokens and use frequency and simple
statistical similarity metrics to determine which tokens were likely to be important in
the data. Although you can do some really amazing things with these techniques, they
don’t really give you any notion of what any given token means in the context in which
it appears in the document. Look no further than a sentence containing a homo-
graph* such as “fish” or “bear” as a case in point; either one could be a noun or a verb.

NLP is inherently complex and difficult to do even reasonably well, and completely
nailing it for a large set of commonly spoken languages may very well be the problem
of the century. After all, a complete mastery of NLP is practically synonymous with
acing the Turing Test, and to the most careful observer, a computer program that ach-
ieves this demonstrates an uncanny amount of human-like intelligence. Whereas struc-
tured or semi-structured sources are essentially collections of records with some pre-
supposed meaning given to each field that can immediately be analyzed, there are more
subtle considerations to be handled with natural language data for even the seemingly
simplest of tasks. For example, let’s suppose you’re given a document and asked to
count the number of sentences in it. It’s a trivial task if you’re a human and have just
a basic understanding of English grammar, but it’s another story entirely for a machine,
which will require a complex and detailed set of instructions to complete the same task.

The encouraging news is that machines can detect the ends of sentences on relatively
well-formed data very quickly and with nearly perfect accuracy. However, even if
you’ve accurately detected all of the sentences, there’s still a lot that you probably don’t
know about the ways that words or phrases are used in those sentences. For example,
consider the now classic circa-1990 phrase, “That’s the bomb”.† It’s a trivially parseable
sentence consisting of almost nothing except a subject, predicate, and object. However,
without additional context, even if you have perfect information about the components
of the sentence—you have no way of knowing the meaning of the word “bomb”—it
could be “something really cool,” or a nuke capable of immense destruction. The point
is that even with perfect information about the structure of a sentence, you may still
need additional context outside the sentence to interpret it. In this case, you need to

* A homonym is a special case of a homograph. Two words are homographs if they have the same spelling.
Two words are homonyms if they have the same spelling and the same pronunciation. For some reason,
“homonym” seems more common in parlance than “homograph” even if it’s being misused.

† See also Urban Dictionary’s definitions for bomb.

240 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

resolve what the pronoun “that” really refers to‡ and do some inferencing about
whether “that” is likely to be a dangerous weapon or not. Thus, as an overly broad
generalization, we can say that NLP is fundamentally about taking an opaque document
that consists of an ordered collection of symbols adhering to proper syntax and a well-
defined grammar, and ultimately deducing the associated semantics that are associated
with those symbols.

A Brief Thought Exercise
Let’s get back to the task of detecting sentences, the first step in most NLP pipelines,
to illustrate some of the complexity involved in NLP. It’s deceptively easy to overesti-
mate the utility of simple rule-based heuristics, and it’s important to work through an
exercise so that you realize what some of the key issues are and don’t waste time trying
to reinvent the wheel.

Your first attempt at solving the sentence detection problem might be to just count the
periods, question marks, and exclamation points in the sentence. That’s the most ob-
vious heuristic for starting out, but it’s quite crude and has the potential for producing
an extremely high margin of error. Consider the following (pretty unambiguous)
accusation:

“Mr. Green killed Colonel Mustard in the study with the candlestick. Mr. Green is not
a very nice fellow.”

Simply tokenizing the sentence by splitting on punctuation (specifically, periods)
would produce the following result:

>>> txt = "Mr. Green killed Colonel Mustard in the study with the \
... candlestick. Mr. Green is not a very nice fellow."
>>> txt.split(".")
['Mr', 'Green killed Colonel Mustard in the study with the candlestick',
 'Mr', 'Green is not a very nice fellow', '']

It should be immediately obvious that performing sentence detection by blindly break-
ing on periods without incorporating some notion of context or higher-level
information is insufficient. In this case, the problem is the use of “Mr.”, a valid abbre-
viation that’s commonly used in the English language. Although we already know from
Chapter 7 that n-gram analysis of this sample would likely tell us that “Mr. Green” is
really one collocation or chunk (a compound token containing whitespace), if we had
a larger amount of text to analyze, it’s not hard to imagine other edge cases that would
be difficult to detect based on the appearance of collocations. Thinking ahead a bit, it’s
also worth pointing out that finding the key topics in a sentence isn’t easy to accomplish
with trivial logic either. As an intelligent human, you can easily discern that the key
topics in our sample might be “Mr. Green”, “Colonel Mustard”, “the study”, and “the
candlestick”, but training a machine to tell you the same things is a complex task. A

‡ Resolving pronouns is called anaphora resolution, a topic that’s well outside the scope of this book.

NLP: A Pareto-Like Introduction | 241

few obvious possibilities are probably occurring to you, such as doing some ‘Title Case’
detection with a regular expression, constructing a list of common abbreviations to
parse out the proper noun phrases, and applying some variation of that logic to the
problem of finding end-of-sentence boundaries to prevent yourself from getting into
trouble on that front.

OK, sure. Those things will work for some examples, but what’s the margin of error
going to be like for arbitrary English text? How forgiving is your algorithm for poorly
formed English text; highly abbreviated information such as text messages or tweets;
or (gasp) other romantic languages, such as Spanish, French, or Italian? There are no
simple answers here, and that’s why text analytics is such an important topic in an age
where the amount of accessible textual data is literally increasing every second. These
things aren’t pointed out to discourage you. They’re actually mentioned to motivate
you to keep trying when times get tough because this is an inherently difficult space
that no one has completely conquered yet. Even if you do feel deflated, you won’t feel
that way for long because NLTK actually performs reasonably well out-of-the-box for
many situations involving arbitrary text, as we’ll see in the next section.

A Typical NLP Pipeline with NLTK
This section interactively walks you through a session in the interpreter to perform NLP
with NLTK. The NLP pipeline we’ll follow is typical and resembles the following high-
level flow:

End of Sentence (EOS) Detection→
Tokenization→
Part-of-Speech Tagging→
Chunking→
Extraction

We’ll use the following sample text for purposes of illustration: “Mr. Green killed Col-
onel Mustard in the study with the candlestick. Mr. Green is not a very nice fellow.”
Remember that even though you have already read the text and understand that it’s
composed of two sentences and all sorts of other things, it’s merely an opaque string
value to a machine at this point. Let’s look at the steps we need to work through in
more detail:

EOS detection
This step breaks a text into a collection of meaningful sentences. Since sentences
generally represent logical units of thought, they tend to have a predictable syntax
that lends itself well to further analysis. Most NLP pipelines you’ll see begin with
this step because tokenization (the next step) operates on individual sentences.
Breaking the text into paragraphs or sections might add value for certain types of
analysis, but it is unlikely to aid in the overall task of EOS detection. In the inter-
preter, you’d parse out a sentence with NLTK like so:

242 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

>>> import nltk
>>> txt = "Mr. Green killed Colonel Mustard in the study with the candlestick. \
... Mr. Green is not a very nice fellow."
>>> sentences = nltk.tokenize.sent_tokenize(txt)
>>> sentences
['Mr. Green killed Colonel Mustard in the study with the candlestick.',
 'Mr. Green is not a very nice fellow.']

We’ll talk a little bit more about what is happening under the hood with sent_token
ize in the next section. For now, we’ll accept at face value that proper sentence
detection has occurred for arbitrary text—a clear improvement over breaking on
characters that are likely to be punctuation marks.

Tokenization
This step operates on individual sentences, splitting them into tokens. Following
along in the example interpreter session, you’d do the following:

>>> tokens = [nltk.tokenize.word_tokenize(s) for s in sentences]
>>> tokens
[['Mr.', 'Green', 'killed', 'Colonel', 'Mustard', 'in', 'the', 'study', 'with',
 'the', 'candlestick', '.'],
['Mr.', 'Green', 'is', 'not', 'a', 'very', 'nice', 'fellow', '.']]

Note that for this simple example, tokenization appeared to do the same thing as
splitting on whitespace, with the exception that it tokenized out end-of-sentence
markers (the periods) correctly. As we’ll see in a later section, though, it can do a
bit more if we give it the opportunity, and we already know that distinguishing
between whether a period is an end of sentence marker or part of an abbreviation
isn’t always trivial.

POS tagging
This step assigns part-of-speech information to each token. In the example inter-
preter session, you’d run the tokens through one more step to have them decorated
with tags:

>>> pos_tagged_tokens = [nltk.pos_tag(t) for t in tokens]
>>> pos_tagged_tokens
[[('Mr.', 'NNP'), ('Green', 'NNP'), ('killed', 'VBD'), ('Colonel', 'NNP'),
 ('Mustard', 'NNP'), ('in', 'IN'), ('the', 'DT'), ('study', 'NN'),
 ('with', 'IN'), ('the', 'DT'), ('candlestick', 'NN'), ('.', '.')],
 [('Mr.', 'NNP'), ('Green', 'NNP'), ('is', 'VBZ'), ('not', 'RB'), ('a', 'DT'),
 ('very', 'RB'), ('nice', 'JJ'), ('fellow', 'JJ'), ('.', '.')]]

You may not intuitively understand all of these tags, but they do represent part-of-
speech information. For example, ‘NNP’ indicates that the token is a noun that is
part of a noun phrase, ‘VBD’ indicates a verb that’s in simple past tense, and ‘JJ’
indicates an adjective. The Penn Treebank Project provides a full summary of the
part-of-speech tags that could be returned. With POS tagging completed, it should
be getting pretty apparent just how powerful analysis can become. For example,
by using the POS tags, we’ll be able to chunk together nouns as part of noun phrases

A Typical NLP Pipeline with NLTK | 243

and then try to reason about what types of entities they might be (e.g., people,
places, organizations, etc.).

Chunking
This step involves analyzing each tagged token within a sentence and assembling
compound tokens that express logical concepts—quite a different approach than
statistically analyzing collocations. It is possible to define a custom grammar
through NLTK’s chunk.RegexpParser, but that’s beyond the scope of this chapter;
see Chapter 9 (“Building Feature Based Grammars”) of Natural Language Pro-
cessing with Python (O’Reilly), available online at http://nltk.googlecode.com/svn/
trunk/doc/book/ch09.html, for full details. Besides, NLTK exposes a function that
combines chunking with named entity extraction, which is the next step.

Extraction
This step involves analyzing each chunk and further tagging the chunks as named
entities, such as people, organizations, locations, etc. The continuing saga of NLP
in the interpreter demonstrates:

>>> ne_chunks = nltk.batch_ne_chunk(pos_tagged_tokens)
>>> ne_chunks
[Tree('S', [Tree('PERSON', [('Mr.', 'NNP')]), Tree('PERSON', [('Green', 'NNP')]),
 ('killed', 'VBD'),
 Tree('ORGANIZATION', [('Colonel', 'NNP'), ('Mustard', 'NNP')]), ('in', 'IN'),
 ('the', 'DT'), ('study', 'NN'), ('with', 'IN'), ('the', 'DT'),
 ('candlestick', 'NN'), ('.', '.')]),
 Tree('S', [Tree('PERSON', [('Mr.', 'NNP')]), Tree('ORGANIZATION',
 [('Green', 'NNP')]), ('is', 'VBZ'), ('not', 'RB'),
 ('a', 'DT'), ('very', 'RB'), ('nice', 'JJ'), ('fellow', 'JJ'), ('.', '.')])]
>>> ne_chunks[0].draw() # You can draw each chunk in the tree

Don’t get too wrapped up in trying to decipher exactly what the tree output means
just yet. In short, it has chunked together some tokens and attempted to classify
them as being certain types of entities. (You may be able to discern that it has
identified “Mr. Green” as a person, but unfortunately categorized “Colonel Mus-
tard” as an organization.) Figure 8-1 illustrates the effect of calling draw() on the
results from nltk.batch_ne_chunk.

As interesting as it would be to continue talking about the intricacies of NLP, producing
a state-of-the-art NLP stack or even taking much of a deeper dive into NLTK for the
purposes of NLP isn’t really our purpose here. The background in this section is pro-
vided to motivate an appreciation for the difficulty of the task and to encourage you to
review the aforementioned NLTK book or one of the many other plentiful resources
available online if you’d like to pursue the topic further. As a bit of passing advice, if
your business (or idea) depends on a truly state-of-the-art NLP stack, strongly consider
purchasing a license to a turn-key product from a commercial or academic institution
instead of trying to home-brew your own. There’s a lot you can do on your own with
open source software, and that’s a great place to start, but as with anything else, the
investment involved can be significant if you have to make numerous improvements

244 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

that require specialized consulting engagements. NLP is still very much an active field
of research, and the cutting edge is nowhere near being a commodity just yet.

Figure 8-1. NLTK can interface with drawing toolkits so that you can inspect the chunked output in
a more intuitive visual form than the raw text output you see in the interpreter

Unless otherwise noted, the remainder of this chapter assumes you’ll be using NLTK
“as-is” as well. (If you had a PhD in computational linguistics or something along those
lines, you’d be more than capable of modifying NLTK for your own needs and would
probably be reading much more scholarly material than this chapter.)

With that brief introduction to NLP concluded, let’s get to work mining some blog data.

Sentence Detection in Blogs with NLTK
Given that sentence detection is probably the first task you’ll want to ponder when
building an NLP stack, it makes sense to start there. Even if you never complete the
remaining tasks in the pipeline, it turns out that EOS detection alone yields some pow-
erful possibilities such as document summarization, which we’ll be considering as a
follow-up exercise. But first, we’ll need to fetch some high-quality blog data. Let’s use
the tried and true feedparser module, which you can easy_install if you don’t have it
already, to fetch some posts from the O’Reilly Radar blog. The listing in Example 8-1
fetches a few posts and saves them to a local file as plain old JSON, since nothing else
in this chapter hinges on the capabilities of a more advanced storage medium, such as
CouchDB. As always, you can choose to store the posts anywhere you’d like.

Example 8-1. Harvesting blog data by parsing feeds (blogs_and_nlp__get_feed.py)

-*- coding: utf-8 -*-

import os
import sys
from datetime import datetime as dt
import json
import feedparser
from BeautifulSoup import BeautifulStoneSoup
from nltk import clean_html

Example feed:
http://feeds.feedburner.com/oreilly/radar/atom
FEED_URL = sys.argv[1]

Sentence Detection in Blogs with NLTK | 245

def cleanHtml(html):
 return BeautifulStoneSoup(clean_html(html),
 convertEntities=BeautifulStoneSoup.HTML_ENTITIES).contents[0]

fp = feedparser.parse(FEED_URL)

print "Fetched %s entries from '%s'" % (len(fp.entries[0].title), fp.feed.title)

blog_posts = []
for e in fp.entries:
 blog_posts.append({'title': e.title, 'content'
 : cleanHtml(e.content[0].value), 'link': e.links[0].href})

if not os.path.isdir('out'):
 os.mkdir('out')

out_file = '%s__%s.json' % (fp.feed.title, dt.utcnow())
f = open(os.path.join(os.getcwd(), 'out', out_file), 'w')
f.write(json.dumps(blog_posts))
f.close()

print >> sys.stderr, 'Wrote output file to %s' % (f.name,)

Obtaining our unstructured text from a reputable source affords us the luxury of
assuming good English grammar; hopefully this also means that one of NLTK’s out-
of-the-box sentence detectors will work reasonably well. There’s no better way to find
out than hacking some code to see what happens, so go ahead and take a gander at the
code listing in Example 8-2. It introduces the sent_tokenize and word_tokenize meth-
ods, which are aliases for NLTK’s currently recommended sentence detector and word
tokenizer. A brief discussion of the listing is provided afterward.

Example 8-2. Using NLTK’s NLP tools to parse blog data (blogs_and_nlp__sentence_detection.py)

-*- coding: utf-8 -*-

import sys
import json
import nltk

Load in output from blogs_and_nlp__get_feed.py

BLOG_DATA = sys.argv[1]
blog_data = json.loads(open(BLOG_DATA).read())

Customize your list of stopwords as needed. Here, we add common
punctuation and contraction artifacts

stop_words = nltk.corpus.stopwords.words('english') + [
 '.',
 ',',
 '--',
 '\'s',

246 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

 '?',
 ')',
 '(',
 ':',
 '\'',
 '\'re',
 '"',
 '-',
 '}',
 '{',
]

for post in blog_data:
 sentences = nltk.tokenize.sent_tokenize(post['content'])

 words = [w.lower() for sentence in sentences for w in
 nltk.tokenize.word_tokenize(sentence)]

 fdist = nltk.FreqDist(words)

 # Basic stats

 num_words = sum([i[1] for i in fdist.items()])
 num_unique_words = len(fdist.keys())

 # Hapaxes are words that appear only once

 num_hapaxes = len(fdist.hapaxes())

 top_10_words_sans_stop_words = [w for w in fdist.items() if w[0]
 not in stop_words][:10]

 print post['title']
 print '\tNum Sentences:'.ljust(25), len(sentences)
 print '\tNum Words:'.ljust(25), num_words
 print '\tNum Unique Words:'.ljust(25), num_unique_words
 print '\tNum Hapaxes:'.ljust(25), num_hapaxes
 print '\tTop 10 Most Frequent Words (sans stop words):\n\t\t', \
 '\n\t\t'.join(['%s (%s)'
 % (w[0], w[1]) for w in top_10_words_sans_stop_words])
 print

Sentence Detection in Blogs with NLTK | 247

The first things you’re probably wondering about are the sent_tokenize and word_token
ize calls. NLTK provides several options for tokenization, but it provides “recommen-
dations” as to the best available via these aliases. At the time of this writing (you can
double-check this with pydoc at any time), the sentence detector is the PunktSentence
Tokenizer and the word tokenizer is the TreebankWordTokenizer. Let’s take a brief look
at each of these.

Internally, the PunktSentenceTokenizer relies heavily on being able to detect abbrevia-
tions as part of collocation patterns, and it uses some regular expressions to try to
intelligently parse sentences by taking into account common patterns of punctuation
usage. A full explanation of the innards of the PunktSentenceTokenizer’s logic is outside
the scope of this book, but Tibor Kiss and Jan Strunk’s original paper, “Unsupervised
Multilingual Sentence Boundary Detection” discusses its approach, is highly readable,
and you should take some time to review it. As we’ll see in a bit, it is possible to in-
stantiate the PunktSentenceTokenizer with sample text that it trains on to try to improve
its accuracy. The type of underlying algorithm that’s used is an unsupervised learning
algorithm; it does not require you to explicitly mark up the sample training data in any
way. Instead, the algorithm inspects certain features that appear in the text itself, such
as the use of capitalization, the co-occurrences of tokens, etc., to derive suitable pa-
rameters for breaking the text into sentences.

While NLTK’s WhitespaceTokenizer, which creates tokens by breaking a piece of text
on whitespace, would have been the simplest word tokenizer to introduce, you’re al-
ready familiar with some of the shortcomings of blindly breaking on whitespace. In-
stead, NLTK currently recommends the TreebankWordTokenizer, a word tokenizer that
operates on sentences and uses the same conventions as the Penn Treebank Project.§

The one thing that may catch you off guard is that the TreebankWordTokenizer’s toke-
nization does some less-than-obvious things, such as separately tagging components
in contractions and nouns having possessive forms. For example, the parsing for the
sentence “I’m hungry,” would yield separate components for “I” and “’m”, maintaining
a distinction between the subject and verb for “I’m”. As you might imagine, finely
grained access to this kind of grammatical information can be quite valuable when it’s
time to do advanced analysis that scrutinizes relationships between subjects and verbs
in sentences.

§ “Treebank” is a very specific term that refers to a corpus that’s been specially tagged with advanced linguistic
information. In fact, the reason such a corpus is called a “treebank” is to emphasize that it’s a bank (think:
collection) of sentences that have been parsed into trees adhering to a particular grammar.

248 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

If you have a lot of trouble with advanced word tokenizers such as
NLTK’s TreebankWordTokenizer or PunktWordTokenizer, it’s fine to de-
fault back to the WhitespaceTokenizer until you decide whether it’s
worth the investment to use a more advanced tokenizer. In fact, in some
cases using a more straightforward tokenizer can be advantageous. For
example, using an advanced tokenizer on data that frequently inlines
URLs might be a bad idea, because these tokenizers do not recognize
URLs out of the box and will mistakenly break them up into multiple
tokens. It’s not in the scope of this book to implement a custom token-
izer, but there are lots of online sources you can consult if this is
something you’re interested in attempting.

Given a sentence tokenizer and a word tokenizer, we can first parse the text into sen-
tences and then parse each sentence into tokens. Note that while this approach is fairly
intuitive, it can have a subtle Achilles’ heel in that errors produced by the sentence
detector propagate forward and can potentially bound the upper limit of the quality
that the rest of the NLP stack can produce. For example, if the sentence tokenizer
mistakenly breaks a sentence on the period after “Mr.” that appears in a section of text
such as “Mr. Green killed Colonel Mustard in the study with the candlestick”, it may
not be possible to extract the entity “Mr. Green” from the text unless specialized repair
logic is in place. Again, it all depends on the sophistication of the full NLP stack and
how it accounts for error propagation. The out-of-the-box PunktSentenceTokenizer is
trained on the Penn Treebank corpus and performs quite well. The end goal of the
parsing is to instantiate a handy-dandy FreqDist object, which expects a list of tokens.
The remainder of the code in Example 8-2 is straightforward usage of a few of the
commonly used NLTK APIs.

The aim of this section was to familiarize you with the first step involved in building
an NLP pipeline. Along the way, we developed a few metrics that make a feeble attempt
at characterizing some blog data. Our pipeline doesn’t involve part-of-speech tagging
or chunking (yet), but it should give you a basic understanding of some concepts and
get you thinking about some of the subtler issues involved. While it’s true that we could
have simply split on whitespace, counted terms, tallied the results, and still gained a
lot of information from the data, it won’t be long before you’ll be glad that you took
these initial steps toward a deeper understanding of the data. To illustrate one possible
application for what you’ve just learned, in the next section, we’ll look at a simple
document summarization algorithm that relies on little more than sentence segmenta-
tion and frequency analysis.

Sentence Detection in Blogs with NLTK | 249

Summarizing Documents
Although it may not be immediately obvious, just being able to perform reasonably
good sentence detection as part of an NLP approach to mining unstructured data can
enable some pretty powerful text-mining capabilities, such as crude but very reasonable
attempts at document summarization. There are numerous possibilities and ap-
proaches, but one of the simplest to get started with dates all the way back to the April
1958 issue of IBM Journal. In the seminal article entitled “The Automatic Creation of
Literature Abstracts,” H.P. Luhn describes a technique that essentially boils down to
filtering out sentences containing frequently occurring words that appear near one
another.

The original paper is easy to understand and is rather interesting; Luhn actually de-
scribes how he prepared punch cards in order to run various tests with different pa-
rameters! It’s amazing to think that what we can implement in a few dozen lines of
Python on a cheap piece of commodity hardware, he probably labored over for hours
and hours to program into a gargantuan mainframe. Example 8-3 provides a basic
implementation of Luhn’s algorithm for document summarization. A brief analysis of
the algorithm appears in the next section. Before skipping ahead to that discussion,
first take a moment to trace through the code and see whether you can determine how
it works.

Example 8-3. A document summarization algorithm (blogs_and_nlp__summarize.py)

-*- coding: utf-8 -*-

import sys
import json
import nltk
import numpy

N = 100 # Number of words to consider
CLUSTER_THRESHOLD = 5 # Distance between words to consider
TOP_SENTENCES = 5 # Number of sentences to return for a "top n" summary

Approach taken from "The Automatic Creation of Literature Abstracts" by H.P. Luhn

def _score_sentences(sentences, important_words):
 scores = []
 sentence_idx = -1

 for s in [nltk.tokenize.word_tokenize(s) for s in sentences]:

 sentence_idx += 1
 word_idx = []

 # For each word in the word list...
 for w in important_words:
 try:
 # Compute an index for where any important words occur in the sentence

250 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

 word_idx.append(s.index(w))
 except ValueError, e: # w not in this particular sentence
 pass

 word_idx.sort()

 # It is possible that some sentences may not contain any important words at all
 if len(word_idx)== 0: continue

 # Using the word index, compute clusters by using a max distance threshold
 # for any two consecutive words

 clusters = []
 cluster = [word_idx[0]]
 i = 1
 while i < len(word_idx):
 if word_idx[i] - word_idx[i - 1] < CLUSTER_THRESHOLD:
 cluster.append(word_idx[i])
 else:
 clusters.append(cluster[:])
 cluster = [word_idx[i]]
 i += 1
 clusters.append(cluster)

 # Score each cluster. The max score for any given cluster is the score
 # for the sentence

 max_cluster_score = 0
 for c in clusters:
 significant_words_in_cluster = len(c)
 total_words_in_cluster = c[-1] - c[0] + 1
 score = 1.0 * significant_words_in_cluster \
 * significant_words_in_cluster / total_words_in_cluster

 if score > max_cluster_score:
 max_cluster_score = score

 scores.append((sentence_idx, score))

 return scores

def summarize(txt):
 sentences = [s for s in nltk.tokenize.sent_tokenize(txt)]
 normalized_sentences = [s.lower() for s in sentences]

 words = [w.lower() for sentence in normalized_sentences for w in
 nltk.tokenize.word_tokenize(sentence)]

 fdist = nltk.FreqDist(words)

 top_n_words = [w[0] for w in fdist.items()
 if w[0] not in nltk.corpus.stopwords.words('english')][:N]

 scored_sentences = _score_sentences(normalized_sentences, top_n_words)

Summarizing Documents | 251

 # Summaization Approach 1:
 # Filter out non-significant sentences by using the average score plus a
 # fraction of the std dev as a filter

 avg = numpy.mean([s[1] for s in scored_sentences])
 std = numpy.std([s[1] for s in scored_sentences])
 mean_scored = [(sent_idx, score) for (sent_idx, score) in scored_sentences
 if score > avg + 0.5 * std]

 # Summarization Approach 2:
 # Another approach would be to return only the top N ranked sentences

 top_n_scored = sorted(scored_sentences, key=lambda s: s[1])[-TOP_SENTENCES:]
 top_n_scored = sorted(top_n_scored, key=lambda s: s[0])

 # Decorate the post object with summaries

 return dict(top_n_summary=[sentences[idx] for (idx, score) in top_n_scored],
 mean_scored_summary=[sentences[idx] for (idx, score) in mean_scored])

if __name__ == '__main__':

 # Load in output from blogs_and_nlp__get_feed.py

 BLOG_DATA = sys.argv[1]
 blog_data = json.loads(open(BLOG_DATA).read())

 for post in blog_data:

 post.update(summarize(post['content']))

 print post['title']
 print '-' * len(post['title'])
 print
 print '-------------'
 print 'Top N Summary'
 print '-------------'
 print ' '.join(post['top_n_summary'])
 print
 print '-------------------'
 print 'Mean Scored Summary'
 print '-------------------'
 print ' '.join(post['mean_scored_summary'])
 print

As example input/output, we’ll use Tim O’Reilly’s Radar post, “The Louvre of the
Industrial Age”. It’s around 460 words long and is reprinted here so that you can com-
pare the sample output from the two summarization attempts in the listing:

This morning I had the chance to get a tour of The Henry Ford Museum in Dearborn,
MI, along with Dale Dougherty, creator of Make: and Makerfaire, and Marc Greuther,
the chief curator of the museum. I had expected a museum dedicated to the auto industry,

252 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

but it’s so much more than that. As I wrote in my first stunned tweet, “it’s the Louvre of
the Industrial Age.”

When we first entered, Marc took us to what he said may be his favorite artifact in the
museum, a block of concrete that contains Luther Burbank’s shovel, and Thomas Edi-
son’s signature and footprints. Luther Burbank was, of course, the great agricultural
inventor who created such treasures as the nectarine and the Santa Rosa plum. Ford was
a farm boy who became an industrialist; Thomas Edison was his friend and mentor. The
museum, opened in 1929, was Ford’s personal homage to the transformation of the world
that he was so much a part of. This museum chronicles that transformation.

The machines are astonishing—steam engines and coal-fired electric generators as big
as houses, the first lathes capable of making other precision lathes (the makerbot of the
19th century), a ribbon glass machine that is one of five that in the 1970s made virtually
all of the incandescent lightbulbs in the world, combine harvesters, railroad locomotives,
cars, airplanes, even motels, gas stations, an early McDonalds’ restaurant and other ep-
iphenomena of the automobile era.

Under Marc’s eye, we also saw the transformation of the machines from purely functional
objects to things of beauty. We saw the advances in engineering—the materials, the
workmanship, the design, over a hundred years of innovation. Visiting The Henry Ford,
as they call it, is a truly humbling experience. I would never in a hundred years have
thought of making a visit to Detroit just to visit this museum, but knowing what I know
now, I will tell you confidently that it is as worth your while as a visit to Paris just to see
the Louvre, to Rome for the Vatican Museum, to Florence for the Uffizi Gallery, to St.
Petersburg for the Hermitage, or to Berlin for the Pergamon Museum. This is truly one
of the world’s great museums, and the world that it chronicles is our own.

I am truly humbled that the Museum has partnered with us to hold Makerfaire Detroit
on their grounds. If you are anywhere in reach of Detroit this weekend, I heartily rec-
ommend that you plan to spend both days there. You can easily spend a day at
Makerfaire, and you could easily spend a day at The Henry Ford. P.S. Here are some of
my photos from my visit. (More to come soon. Can’t upload many as I’m currently on a
plane.)

Filtering sentences using an average score and standard deviation yields a summary of
around 170 words:

This morning I had the chance to get a tour of The Henry Ford Museum in Dearborn,
MI, along with Dale Dougherty, creator of Make: and Makerfaire, and Marc Greuther,
the chief curator of the museum. I had expected a museum dedicated to the auto industry,
but it’s so much more than that. As I wrote in my first stunned tweet, “it’s the Louvre of
the Industrial Age. This museum chronicles that transformation. The machines are as-
tonishing - steam engines and coal fired electric generators as big as houses, the first
lathes capable of making other precision lathes (the makerbot of the 19th century), a
ribbon glass machine that is one of five that in the 1970s made virtually all of the incan-
descent lightbulbs in the world, combine harvesters, railroad locomotives, cars,
airplanes, even motels, gas stations, an early McDonalds’ restaurant and other epiphe-
nomena of the automobile era. You can easily spend a day at Makerfaire, and you could
easily spend a day at The Henry Ford.

Summarizing Documents | 253

An alternative summarization approach, which considers only the top N sentences
(where N = 5 in this case), produces a slightly more abridged result of around 90 words.
It’s even more succinct, but arguably still a pretty informative distillation:

This morning I had the chance to get a tour of The Henry Ford Museum in Dearborn,
MI, along with Dale Dougherty, creator of Make: and Makerfaire, and Marc Greuther,
the chief curator of the museum. I had expected a museum dedicated to the auto industry,
but it’s so much more than that. As I wrote in my first stunned tweet, “it’s the Louvre of
the Industrial Age. This museum chronicles that transformation. You can easily spend a
day at Makerfaire, and you could easily spend a day at The Henry Ford.

As in any other situation involving analysis, there’s a lot of insight to be gained from
visually inspecting the summarizations in relation to the full text. Outputting a simple
markup format that can be opened by virtually any web browser is as simple as adjusting
the final portion of the script that performs the output to do some string substitution.
Example 8-4 illustrates one possibility.

Example 8-4. Augmenting the output of Example 8-3 to produce HTML markup that
lends itself to analyzing the summarization algorithm’s results
(blogs_and_nlp__summarize_markedup_output.py)

-*- coding: utf-8 -*-

import os
import sys
import json
import nltk
import numpy
from blogs_and_nlp__summarize import summarize

HTML_TEMPLATE = """<html>
 <head>
 <title>%s</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 </head>
 <body>%s</body>
</html>"""

if __name__ == '__main__':

 # Load in output from blogs_and_nlp__get_feed.py

 BLOG_DATA = sys.argv[1]
 blog_data = json.loads(open(BLOG_DATA).read())

 # Marked up version can be written out to disk

 if not os.path.isdir('out/summarize'):
 os.makedirs('out/summarize')

 for post in blog_data:

 post.update(summarize(post['content']))

254 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

 # You could also store a version of the full post with key sentences markedup
 # for analysis with simple string replacement...

 for summary_type in ['top_n_summary', 'mean_scored_summary']:
 post[summary_type + '_marked_up'] = '<p>%s</p>' % (post['content'],)
 for s in post[summary_type]:
 post[summary_type + '_marked_up'] = \
 post[summary_type + '_marked_up'].replace(s, \
 '%s' % (s,))

 filename = post['title'] + '.summary.' + summary_type + '.html'
 f = open(os.path.join('out', 'summarize', filename), 'w')
 html = HTML_TEMPLATE % (post['title'] + \
 ' Summary', post[summary_type + '_marked_up'],)

 f.write(html.encode('utf-8'))
 f.close()

 print >> sys.stderr, "Data written to", f.name

The resulting output is the full text of the document with sentences comprising the
summary highlighted in bold, as displayed in Figure 8-2. As you explore alternative
techniques for summarization, a quick glance between browser tabs can give you an
intuitive feel for the similarity between the summarization techniques. The primary
difference illustrated here is a fairly long (and descriptive) sentence near the middle of
the document, beginning with the words “The machines are astonishing”.

Figure 8-2. The text from an O’Reilly Radar blog post with the most important sentences as determined
by a summarization algorithm conveyed in bold

The next section presents a brief discussion of Luhn’s approach.

Summarizing Documents | 255

Analysis of Luhn’s Summarization Algorithm
The basic premise behind Luhn’s algorithm is that the important sentences in a docu-
ment will be the ones that contain frequently occurring words. However, there are a
few details worth pointing out. First, not all frequently occurring words are important;
generally speaking, stopwords are filler and are hardly ever of interest for analysis. Keep
in mind that although we do filter out common stopwords in the sample implementa-
tion, it may be possible to create a custom list of stopwords for any given blog or domain
with additional a priori knowledge, which might further bolster the strength of this
algorithm or any other algorithm that assumes stopwords have been filtered. For ex-
ample, a blog written exclusively about baseball might so commonly use the word
“baseball” that you should consider adding it to a stopword list, even though it’s not
a general-purpose stopword. (As a side note, it would be interesting to incorporate TF-
IDF into the scoring function for a particular data source as a means of accounting for
common words in the parlance of the domain.)

Assuming that a reasonable attempt to eliminate stopwords has been made, the next
step in the algorithm is to choose a reasonable value for N and choose the top N words
as the basis of analysis. Note that the latent assumption behind this algorithm is that
these top N words are sufficiently descriptive to characterize the nature of the docu-
ment, and that for any two sentences in the document, the sentence that contains more
of these words will be considered more descriptive. All that’s left after determining the
“important words” in the document is to apply a heuristic to each sentence and filter
out some subset of sentences to use as a summarization or abstract of the document.
Scoring each sentence takes place in the function score_sentences. This is where most
of the interesting action happens in the listing.

In order to score each sentence, the algorithm in score_sentences applies a simple
distance threshold to cluster tokens, and scores each cluster according to the following
formula:

The final score for each sentence is equal to the highest score for any cluster appearing
in the sentence. Let’s consider the high-level steps involved in score_sentences for an
example sentence to see how this approach works in practice:

Input: Sample sentence
['Mr.', 'Green', 'killed', 'Colonel', 'Mustard', 'in', 'the', 'study',
'with', 'the', 'candlestick', '.']

Input: List of important words
['Mr.', 'Green', 'Colonel', 'Mustard', 'candlestick']

Input/Assumption: Cluster threshold (distance)
3

256 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

Intermediate Computation: Clusters detected
[['Mr.', 'Green', 'killed', 'Colonel', 'Mustard'], ['candlestick']]

Intermediate Computation: Cluster scores
[3.2, 1] # Computation: [(4*4)/5, (1*1)/1]

Output: Sentence score
3.2 # max([3.2, 1])

The actual work done in score_sentences is just bookkeeping to detect the clusters in
the sentence. A cluster is defined as a sequence of words containing two or more im-
portant words, where each important word is within a distance threshold of its nearest
neighbor. While Luhn’s paper suggests a value of 4 or 5 for the distance threshold, we
used a value of 3 for simplicity in this example; thus, the distance between ‘Green’ and
‘Colonel’ was sufficiently bridged, and the first cluster detected consisted of the first
five words in the sentence. Note that had the word “study” also appeared in the list of
important words, the entire sentence (except the final punctuation) would have
emerged as a cluster.

Once each sentence has been scored, all that’s left is to determine which sentences to
return as a summary. The sample implementation provides two approaches. The first
approach uses a statistical threshold to filter out sentences by computing the mean and
standard deviation for the scores obtained, while the latter simply returns the top N
sentences. Depending on the nature of the data, your mileage will probably vary, but
you should be able to tune the parameters to achieve reasonable results with either.
One nice thing about using the top N sentences is that you have a pretty good idea
about the maximum length of the summary. Using the mean and standard deviation
could potentially return more sentences than you’d prefer, if a lot of sentences contain
scores that are relatively close to one another.

Luhn’s algorithm is simple to implement and plays to the usual strength of frequently
appearing words being descriptive of the overall document. However, keep in mind
that like many of the IR approaches we explored in the previous chapter, Luhn’s algo-
rithm makes no attempt to understand the data at a deeper semantic level. It directly
computes summarizations as a function of frequently occurring words, and it isn’t
terribly sophisticated in how it scores sentences. Still, as was the case with TF-IDF, this
makes it all the more amazing that it can perform as well as it seems to perform on
randomly selected blog data.

When weighing the pros and cons of implementing a much more complicated ap-
proach, it’s worth reflecting on the effort that would be required to improve upon a
reasonable summarization such as that produced by Luhn’s algorithm. Sometimes, a
crude heuristic is all you really need to accomplish your goal. At other times, however,
you may need something more state of the art. The tricky part is computing the cost-
benefit analysis of migrating from the crude heuristic to the state-of-the-art solution.
Many of us tend to be overly optimistic about the relative effort involved.

Summarizing Documents | 257

Entity-Centric Analysis: A Deeper Understanding of the Data
Throughout this chapter, it’s been implied that analytic approaches that exhibit a
deeper understanding of the data can be dramatically more powerful than approaches
that simply treat each token as an opaque symbol. But what does “a deeper under-
standing” of the data really mean? One interpretation is being able to detect the entities
in documents and using those entities as the basis of analysis, as opposed to document-
centric analysis involving keyword searches or interpreting a search input as a particular
type of entity and customizing results accordingly. Although you may not have thought
about it in those terms, this is precisely what emerging technologies such as
WolframAlpha do at the presentation layer. For example, a search for “tim o’reilly” in
WolframAlpha returns results that imply an understanding that the entity being
searched for is a person; you don’t just get back a list of documents containing the
keywords (see Figure 8-3). Regardless of the internal technique that’s used to accom-
plish this end, the resulting user experience is dramatically more powerful because the
results conform to a format that more closely satisfies the user’s expectations.

Figure 8-3. Sample results for a “tim o’reilly” query with WolframAlpha

258 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

Although it’s beyond the scope of this chapter to ponder the various possibilities of
entity-centric analysis, it’s well within our scope and quite appropriate to present a
means of extracting the entities from a document, which can then be used for various
analytic purposes. Assuming the sample flow of an NLP pipeline as presented earlier
in this chapter, one approach you could take would be to simply extract all the nouns
and noun phrases from the document and index them as entities appearing in the
documents—the important underlying assumption being that nouns and noun phrases
(or some carefully constructed subset thereof) qualify as entities of interest. This is
actually a very fair assumption to make and a good starting point for entity-centric
analysis, as the following sample listing demonstrates. Note that for results annotated
according to Penn Treebank conventions, any tag beginning with ‘NN’ is some form
of a noun or noun phrase. A full listing of the Penn Treebank Tags is available online.

Example 8-5 analyzes the part-of-speech tags that are applied to tokens, and identifies
nouns and noun phrases as entities. In data-mining parlance, finding the entities in a
text is called entity extraction.

Example 8-5. Extracting entities from a text with NLTK (blogs_and_nlp__extract_entities.py)

-*- coding: utf-8 -*-

import sys
import nltk
import json

Load in output from blogs_and_nlp__get_feed.py

BLOG_DATA = sys.argv[1]
blog_data = json.loads(open(BLOG_DATA).read())

for post in blog_data:

 sentences = nltk.tokenize.sent_tokenize(post['content'])
 tokens = [nltk.tokenize.word_tokenize(s) for s in sentences]
 pos_tagged_tokens = [nltk.pos_tag(t) for t in tokens]

 # Flatten the list since we're not using sentence structure
 # and sentences are guaranteed to be separated by a special
 # POS tuple such as ('.', '.')

 pos_tagged_tokens = [token for sent in pos_tagged_tokens for token in sent]

 all_entity_chunks = []
 previous_pos = None
 current_entity_chunk = []
 for (token, pos) in pos_tagged_tokens:

 if pos == previous_pos and pos.startswith('NN'):
 current_entity_chunk.append(token)
 elif pos.startswith('NN'):
 if current_entity_chunk != []:

Entity-Centric Analysis: A Deeper Understanding of the Data | 259

 # Note that current_entity_chunk could be a duplicate when appended,
 # so frequency analysis again becomes a consideration

 all_entity_chunks.append((' '.join(current_entity_chunk), pos))
 current_entity_chunk = [token]

 previous_pos = pos

 # Store the chunks as an index for the document
 # and account for frequency while we're at it...

 post['entities'] = {}
 for c in all_entity_chunks:
 post['entities'][c] = post['entities'].get(c, 0) + 1

 # For example, we could display just the title-cased entities

 print post['title']
 print '-' * len(post['title'])
 proper_nouns = []
 for (entity, pos) in post['entities']:
 if entity.istitle():
 print '\t%s (%s)' % (entity, post['entities'][(entity, pos)])
 print

You may recall from the description of “extraction” in “A Typical NLP
Pipeline with NLTK” on page 242 that NLTK provides an
nltk.batch_ne_chunk function that attempts to extract named entities
from POS-tagged tokens. You’re welcome to use this capability directly,
but you may find that your mileage varies with the out-of-the-box mod-
els that back the implementation. A discussion of improving the imple-
mentation that ships with NLTK is outside the scope of this chapter.

Sample output for the listing is presented in Example 8-6. It provides results that are
quite meaningful and would make great suggestions for tags by an intelligent blogging
platform. For a larger corpus than we’re working with in this example, a tag cloud
would also be an obvious candidate for visualizing the data. (Recall that “Visualizing
Tweets with Tricked-Out Tag Clouds” on page 158 introduced an easy-to-use but very
powerful tag cloud that you could easily adapt to work here.)

Example 8-6. Sample results from Example 8-5

The Louvre of the Industrial Age

 Paris (1)
 Henry Ford Museum (1)
 Vatican Museum (1)
 Museum (1)
 Thomas Edison (2)
 Hermitage (1)
 Uffizi Gallery (1)

260 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

 Ford (2)
 Santa Rosa (1)
 Dearborn (1)
 Makerfaire (1)
 Berlin (1)
 Marc (2)
 Makerfaire (1)
 Rome (1)
 Henry Ford (1)
 Ca (1)
 Louvre (1)
 Detroit (2)
 St. Petersburg (1)
 Florence (1)
 Marc Greuther (1)
 Makerfaire Detroit (1)
 Luther Burbank (2)
 Make (1)
 Dale Dougherty (1)
 Louvre (1)

Could we have discovered the same list of terms by more blindly analyzing the lexical
characteristics (such as use of capitalization) of the sentence? Perhaps, but keep in mind
that this technique can also capture nouns and noun phrases that are not indicated by
title case. Case is indeed an important feature of the text that can generally be exploited
to great benefit, but there are other interesting entities in the sample text that are all
lowercase (for example, “chief curator”, “locomotives”, and “lightbulbs”).

Although the list of entities certainly doesn’t convey the overall meaning of the text as
effectively as the summary we computed earlier, identifying these entities can be ex-
tremely valuable for analysis since they have meaning at a semantic level and are not just
frequently occurring words. In fact, the frequencies of most of the terms displayed in
the sample output are quite low. Nevertheless, they’re important because they have a
grounded meaning in the text—namely, they’re people, places, things, or ideas, which
are generally the substantive information in the data.

It’s not much of a leap at this point to think that it would be another major step forward
to take into account the verbs and compute triples of the form subject-verb-object so
that you know which entities are interacting with which other entities, and the nature
of those interactions. Such triples would lend themselves to visualizing object graphs
of documents, which could potentially be skimmed much faster than reading the docu-
ments themselves. Better yet, imagine taking multiple object graphs derived from a set
of documents and merging them to get the gist of the larger corpus. This exact technique
is very much an area of active research and has tremendous applicability for virtually
any situation suffering from the information-overload problem. But as will be illustra-
ted, it’s an excruciating problem for the general case and not for the faint of heart.

Assuming a part-of-speech tagger has identified the following parts of speech from a
sentence and emitted output such as [('Mr.', 'NNP'), ('Green', 'NNP'), ('killed',
'VBD'), ('Colonel', 'NNP'), ('Mustard', 'NNP'), ...], an index storing subject-

Entity-Centric Analysis: A Deeper Understanding of the Data | 261

predicate-object tuples of the form ('Mr. Green', 'killed', 'Colonel Mustard')
would be easy to compute. However, the reality of the situation is that you’re very
unlikely to run across actual POS-tagged data with that level of simplicity—unless
you’re planning to mine children’s books (something that’s not actually a bad idea for
beginners). For example, consider the tagging emitted from NLTK for the first sentence
from the blog post printed earlier in this chapter as an arbitrary and realistic piece of
data you might like to translate into an object graph:

This morning I had the chance to get a tour of The Henry Ford Museum in Dearborn,
MI, along with Dale Dougherty, creator of Make: and Makerfaire, and Marc Greuther,
the chief curator of the museum.

The simplest possible triple that you might expect to distill from that sentence is ('I',
'get', 'tour'), but even if you got that back, it wouldn’t convey that Dale Dougherty
also got the tour, or that Mark Greuther was involved. The POS-tagged data should
make it pretty clear that it’s not quite so straightforward to arrive at any of those in-
terpretations, either, because the sentence has a very rich structure:

[(u'This', 'DT'), (u'morning', 'NN'), (u'I', 'PRP'), (u'had', 'VBD'), (u'the', 'DT'),
(u'chance', 'NN'), (u'to', 'TO'), (u'get', 'VB'), (u'a', 'DT'), (u'tour', 'NN'),
(u'of', 'IN'), (u'The', 'DT'), (u'Henry', 'NNP'), (u'Ford', 'NNP'), (u'Museum', 'NNP'),
(u'in', 'IN'), (u'Dearborn', 'NNP'), (u',', ','), (u'MI', 'NNP'), (u',', ','),
(u'along', 'IN'), (u'with', 'IN'), (u'Dale', 'NNP'), (u'Dougherty', 'NNP'), (u',',
','), (u'creator', 'NN'), (u'of', 'IN'), (u'Make', 'NNP'), (u':', ':'), (u'and', 'CC'),
(u'Makerfaire', 'NNP'), (u',', ','), (u'and', 'CC'), (u'Marc', 'NNP'), (u'Greuther',
'NNP'), (u',', ','), (u'the', 'DT'), (u'chief', 'NN'), (u'curator', 'NN'), (u'of',
'IN'), (u'the', 'DT'), (u'museum', 'NN'), (u'.', '.')]

It’s doubtful whether even a state-of-the-art solution would be capable of emitting
meaningful triples in this case, given the complex nature of the predicate “had a chance
to get a tour”, and that the other actors involved in the tour are listed in a phrase
appended to the end of the sentence. Strategies for constructing these triples are well
outside the scope of this book, but in theory, you should be able to use reasonably
accurate POS tagging information to take a good stab at it. The difficulty of this task
was pointed out not to discourage you, but to provide a realistic view of the complexity
of NLP in general so that you know what you’re getting into when you decide to tackle
the problem of computing triples for the general case. It can be a lot of work, but the
results are well worth it.

All that said, the good news is that you can actually do a lot of interesting things by
distilling just the entities from text and using them as the basis of analysis, as demon-
strated earlier. You can very easily produce triples from text on a per-sentence basis,
where the “predicate” of each triple is a notion of a generic relationship signifying that
the subject and object “interacted” with one another. Example 8-7 is a refactoring of
Example 8-5 that collects entities on a per-sentence basis, which could be quite useful
for computing the interactions between entities using a sentence as a context window.

262 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

Example 8-7. Discovering interactions between entities (blogs_and_nlp__extract_interactions.py)

-*- coding: utf-8 -*-

import sys
import nltk
import json

def extract_interactions(txt):
 sentences = nltk.tokenize.sent_tokenize(txt)
 tokens = [nltk.tokenize.word_tokenize(s) for s in sentences]
 pos_tagged_tokens = [nltk.pos_tag(t) for t in tokens]

 entity_interactions = []
 for sentence in pos_tagged_tokens:

 all_entity_chunks = []
 previous_pos = None
 current_entity_chunk = []

 for (token, pos) in sentence:

 if pos == previous_pos and pos.startswith('NN'):
 current_entity_chunk.append(token)
 elif pos.startswith('NN'):
 if current_entity_chunk != []:
 all_entity_chunks.append((' '.join(current_entity_chunk),
 pos))
 current_entity_chunk = [token]

 previous_pos = pos

 if len(all_entity_chunks) > 1:
 entity_interactions.append(all_entity_chunks)
 else:
 entity_interactions.append([])

 assert len(entity_interactions) == len(sentences)

 return dict(entity_interactions=entity_interactions,
 sentences=sentences)

if __name__ == '__main__':

 # Read in output from blogs_and_nlp__get_feed.py

 BLOG_DATA = sys.argv[1]
 blog_data = json.loads(open(BLOG_DATA).read())

 # Display selected interactions on a per-sentence basis

 for post in blog_data:

 post.update(extract_interactions(post['content']))

 print post['title']

Entity-Centric Analysis: A Deeper Understanding of the Data | 263

 print '-' * len(post['title'])
 for interactions in post['entity_interactions']:
 print '; '.join([i[0] for i in interactions])
 print

The results from this listing, presented in Example 8-8, highlight something very im-
portant about the nature of unstructured data analysis: it’s messy!

Example 8-8. Sample output from Example 8-7

The Louvre of the Industrial Age

morning; chance; tour; Henry Ford Museum; Dearborn; MI; Dale Dougherty; creator;
Make; Makerfaire; Marc Greuther; chief curator

tweet; Louvre

"; Marc; artifact; museum; block; contains; Luther Burbank; shovel; Thomas Edison…

Luther Burbank; course; inventor; treasures; nectarine; Santa Rosa

Ford; farm boy; industrialist; Thomas Edison; friend

museum; Ford; homage; transformation; world

machines; steam; engines; coal; generators; houses; lathes; precision; lathes;
makerbot; century; ribbon glass machine; incandescent; lightbulbs; world; combine;
harvesters; railroad; locomotives; cars; airplanes; gas; stations; McDonalds;
restaurant; epiphenomena

Marc; eye; transformation; machines; objects; things

advances; engineering; materials; workmanship; design; years

years; visit; Detroit; museum; visit; Paris; Louvre; Rome; Vatican Museum; Florence;
Uffizi Gallery; St. Petersburg; Hermitage; Berlin

world; museums

Museum; Makerfaire Detroit

reach; Detroit; weekend

day; Makerfaire; day

A certain amount of noise in the results is almost inevitable, but realizing results that
are highly intelligible and useful—even if they do contain a manageable amount of
noise—is a very worthy aim. The amount of effort required to achieve pristine results
that are nearly noise-free can be immense. In fact, in most situations, this is downright
impossible because of the inherent complexity involved in natural language and the
limitations of most currently available toolkits, such as NLTK. If you are able to make
certain assumptions about the domain of the data or have expert knowledge of the
nature of the noise, you may be able to devise heuristics that are effective without risking

264 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

an unacceptable amount of potential information loss. But it’s a fairly difficult
proposition.

Still, the interactions do provide a certain amount of “gist” that’s valuable. For example,
how closely would your interpretation of “morning; chance; tour; Henry Ford Mu-
seum; Dearborn; MI; Dale Dougherty; creator; Make; Makerfaire; Marc Greuther; chief
curator” align with the meaning in the original sentence?

As was the case with our previous adventure in summarization, displaying markup that
can be visually skimmed for inspection is also quite handy. A simple modification to
the script’s output is all that’s necessary to produce the result shown in Figure 8-4 (see
Example 8-9).

Example 8-9. Modification of script from Example 8-7
(blogs_and_nlp__extract_interactions_markedup_output.py)

-*- coding: utf-8 -*-

import os
import sys
import nltk
import json
from blogs_and_nlp__extract_interactions import extract_interactions

HTML_TEMPLATE = """<html>
 <head>
 <title>%s</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 </head>
 <body>%s</body>
</html>"""

if __name__ == '__main__':

 # Read in output from blogs_and_nlp__get_feed.py

 BLOG_DATA = sys.argv[1]
 blog_data = json.loads(open(BLOG_DATA).read())

 # Marked up version can be written out to disk

 if not os.path.isdir('out/interactions'):
 os.makedirs('out/interactions')

 for post in blog_data:

 post.update(extract_interactions(post['content']))

 # Display output as markup with entities presented in bold text

 post['markup'] = []

 for sentence_idx in range(len(post['sentences'])):

Entity-Centric Analysis: A Deeper Understanding of the Data | 265

 s = post['sentences'][sentence_idx]
 for (term, _) in post['entity_interactions'][sentence_idx]:
 s = s.replace(term, '%s' % (term,))

 post['markup'] += [s]

 filename = post['title'] + '.entity_interactions.html'
 f = open(os.path.join('out', 'interactions', filename), 'w')
 html = HTML_TEMPLATE % (post['title'] + ' Interactions', ' '.join(post['markup']),)
 f.write(html.encode('utf-8'))
 f.close()

 print >> sys.stderr, "Data written to", f.name

Figure 8-4. Sample HTML output that displays entities identified in the text in bold so that it’s easy
to visually skim the content for its key concepts

As a consideration for the “interested reader,” it would be worthwhile to perform ad-
ditional analyses to identify the sets of interactions for a larger body of text and to find
co-occurrences in the interactions. You could also very easily adapt some of the Graph-
viz or Protovis output from Chapter 1 to visualize a graph of the interactions where
edges don't necessary have any labels. The example file http://github.com/ptwobrussell/
Mining-the-Social-Web/blob/master/python_code/introduction__retweet_visualization
.py would make a very good starting point.

Even without knowing the specific nature of the interaction, there’s still a lot of value
in just knowing the subject and the object. And if you’re feeling ambitious and are

266 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

comfortable with a certain degree of messiness and lack of precision, by all means you
can attempt to fill in the missing verbs!

Quality of Analytics
When you’ve done a lot of data mining, you’ll eventually want to start quantifying the
quality of your analytics. This is especially the case with text mining. For example, if
you began customizing the basic algorithm for extracting the entities from unstructured
text, how would you know whether your algorithm was getting more or less performant
with respect to the quality of the results? While you could manually inspect the results
for a small corpus and tune the algorithm until you were satisfied with them, you’d still
have a devil of a time determining whether your analytics would perform well on a
much larger corpus or a different class of document altogether—hence, the need for a
more automated process.

An obvious starting point is to randomly sample some documents and create a “golden
set” of entities that you believe are absolutely crucial for a good algorithm to extract
from them and use this list as the basis of evaluation. Depending on how rigorous you’d
like to be, you might even be able to compute the sample error and use a statistical
device called a confidence interval‖ to predict the true error with a sufficient degree of
confidence for your needs.

However, what exactly is the calculation you should be computing based on the results
of your extractor and golden set in order to compute accuracy? A very common calcu-
lation for measuring accuracy is called the F1 score, which is defined in terms of two
concepts called precision and recall# as:

where:

‖ Plenty of information regarding confidence intervals is readily available online.

#More precisely, F1 is said to be the harmonic mean of precision and recall, where the harmonic mean of any
two numbers, x and y, is defined as:

You can read more about why it’s the “harmonic” mean by reviewing the definition of a harmonic number.

Entity-Centric Analysis: A Deeper Understanding of the Data | 267

and:

In the current context, precision is a measure of exactness that reflects “false positives,”
and recall is a measure of completeness that reflects “true positives.” The following list
clarifies the meaning of these terms in relation to the current discussion in case they’re
unfamiliar or confusing:

True positives (TP)
Terms that were correctly identified as entities

False positives (FP)
Terms that were identified as entities but should not have been

True negatives (TN)
Terms that were not identified as entities and should not have been

False negatives (FN)
Terms that were not identified as entities but should have been

Given that precision is a measure of exactness that quantifies false positives, it is defined
as precision = TP / (TP + FP). Intuitively, if the number of false positives is zero, the
exactness of the algorithm is perfect and the precision yields a value of 1.0. Conversely,
if the number of false positives is high and begins to approach or surpass the value of
true positives, precision is poor and the ratio approaches zero. As a measure of com-
pleteness, recall is defined as TP / (TP + FN) and yields a value of 1.0, indicating perfect
recall, if the number of false negatives is zero. As the number of false negatives increases,
recall approaches zero. Note that by definition, F1 yields a value of 1.0 when precision
and recall are both perfect, and approaches zero when both precision and recall are
poor. Of course, what you’ll find out in the wild is that it’s generally a trade-off as to
whether you want to boost precision or recall, because it’s very difficult to have both.
If you think about it, this makes sense because of the trade-offs involved with false
positives and false negatives (see Figure 8-5).

To put all of this into perspective, let’s consider the classic (by now anyway) sentence,
“Mr. Green killed Colonel Mustard in the study with the candlestick” and assume that
an expert has determined that the key entities in the sentence are “Mr. Green”, “Colonel
Mustard”, “study”, and “candlestick”. Assuming your algorithm identified these four
terms and only these four terms, you’d have 4 true positives, 0 false positives, 5 true
negatives (“killed”, “with”, “the”, “in”, “the”), and 0 false negatives. That’s perfect
precision and perfect recall, which yields an F1 score of 1.0. Substituting various values
into the precision and recall formulas is straightforward and a worthwhile exercise if
this is your first time encountering these terms. For example, what would the precision,
recall, and F1 score have been if your algorithm had identified “Mr. Green”, “Colonel”,
“Mustard”, and “candlestick”?

268 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

As somewhat of an aside, you might find it interesting to know that many of the most
compelling technology stacks used by commercial businesses in the NLP space use
advanced statistical models to process natural language according to supervised learn-
ing algorithms. A supervised learning algorithm is essentially an approach in which you
provide training samples of the form [(input1, output1), (input2, output2), ...,
(inputN, outputN)] to a model such that the model is able to predict the tuples with
reasonable accuracy. The tricky part is ensuring that the trained model generalizes well
to inputs that have not yet been encountered. If the model performs well for training
data but poorly on unseen samples, it’s usually said to suffer from the problem of
overfitting the training data. A common approach for measuring the efficacy of a model
is called cross-validation. With this approach, a portion of the training data (say, one-
third) is reserved exclusively for the purpose of testing the model, and only the re-
mainder is used for training the model.

Closing Remarks
This chapter introduced the bare essentials of advanced unstructured data analytics,
and demonstrated how to use NLTK to go beyond the sentence parsing that was in-
troduced in Chapter 7, putting together the rest of an NLP pipeline and extraction
entities from text. The field of computational linguistics is still quite nascent, and nail-
ing the problem of NLP for most of the world’s most commonly spoken languages is
arguably the problem of the century. Push NLTK to its limits, and when you need more
performance or quality, consider rolling up your sleeves and digging into some of the
academic literature. It’s admittedly a daunting task, but a truly worthy problem if you
are interested in tackling it.

Figure 8-5. The intuition behind true positives, false positives, true negatives, and false negatives

Closing Remarks | 269

If you’d like to expand on the contents of this chapter, consider using NLTK’s word-
stemming tools to try to compute (entity, stemmed predicate, entity) tuples, building
upon the code in Example 8-7. You might also look into WordNet, a tool that you’ll
undoubtedly run into sooner rather than later, to discover additional meaning about
the items in the tuples. If you find yourself with copious free time on your hands,
consider taking a look at some of the many popular commenting APIs, such as DIS-
QUS, and try to incorporate the NLP techniques we’ve covered into the comments
streams for blog posts. Crafting a WordPress plug-in that intelligently suggests tags
based upon the entities that are extracted from a draft blog post would also be a great
way to spend an evening or weekend.

270 | Chapter 8: Blogs et al.: Natural Language Processing (and Beyond)

CHAPTER 9

Facebook: The All-in-One Wonder

From the standpoint of the social web, Facebook truly is an all-in-one wonder. Given
that its more than 500 million users can update their public statuses to let their friends
know what they’re doing/thinking/etc., exchange lengthier messages in a fashion sim-
ilar to emailing back and forth, engage in real-time chat, organize and share their pho-
tos, “check in” to physical locales, and do about a dozen other things via the site, it’s
not all that surprising that Facebook edged out Google as the most visited website as
2010 came to a close. Figure 9-1 shows a chart that juxtaposes Google and Facebook
visiting figures just in case there’s any doubt in your mind. This is particularly exciting
because where there are a lot of regular users, there’s lots of interesting data. In this
chapter, we’ll take advantage of Facebook’s incredibly powerful APIs for mining this
data to discover your most connected friends, cluster your friends based on common
interests, and get a quick indicator of what the people in your social network are talking
about.

We’ll start with a brief overview of common Facebook APIs, then quickly transition
into writing some scripts that take advantage of these APIs so that we can analyze and
visualize some of your social data. Virtually all of the techniques we’ve applied in pre-
vious chapters could be applied to your Facebook data, because the Facebook platform
is so rich and diverse. As in most of the other chapters, we won’t be able to cover all of
the ground that could possibly be covered: a small tome could be devoted just to the
many interesting applications and data-mining contraptions you could build on such
a rich platform that gives you access to so many details about the people closest to you.
As with any other rich developer platform, make sure that any techniques you apply
from this chapter in production applications take into account users’ privacy, and re-
member to review Facebook’s developer principles and policies regularly so as to avoid
any unexpected surprises when rolling out your application to the rest of the world.

271

Figure 9-1. Total monthly visits of Facebook and Google as of August 2010

Tapping into Your Social Network Data
This section provides a brief overview of how to complete Facebook’s OAuth 2.0 flow
for a desktop application to get you an access token, then quickly transitions into some
data-gathering exercises. To keep this chapter as simple as possible, we won’t discuss
building a Facebook application: there are plenty of tutorials online that can teach you
how to do that, and introducing Facebook application development would require an
overview of a server platform such as Google App Engine (GAE), since Facebook apps
must be externally hosted in your own server environment. However, a GAE version
of the scripts that are presented in this chapter is available for download at http://github
.com/ptwobrussell/Mining-the-Social-Web/tree/master/web_code/facebook_gae_demo
_app . It’s easy to deploy and is a bona fide Facebook application that you can use as
a starting point once you decide that you’re ready to go down that path and convert
your scripts into deployable apps.

From Zero to Access Token in Under 10 Minutes
As with any other OAuth-enabled app, to get started you’ll need to acquire an appli-
cation ID and secret to use for authorization, opt into the developer community, and
create an “application.” The following list summarizes the main steps, and some visual
cues are provided in Figure 9-2:

• First, if you don’t already have one, you’ll need to set up a Facebook account. Just
go to http://facebook.com and sign up to join the party.

• Next, you’ll need to install the Developer application by visiting http://www.face
book.com/developers and clicking through the request to install the application.

• Once the Developer application is installed, you can click the “Set Up New Ap-
plication” button to create your application.

272 | Chapter 9: Facebook: The All-in-One Wonder

Figure 9-2. From top to bottom: a) the button you’ll click from http://www.facebook.com/developers
to set up a new application, b) the dialog you’ll complete to give your app a name and acknowledge
the terms of service, c) your application now appears in the list of applications, and d) your app’s
settings, including your OAuth 2.0 app ID and secret

Tapping into Your Social Network Data | 273

• Once you’ve completed the security check, your app will have an ID and secret
that you can use to complete the steps involved in Facebook’s OAuth 2.0 imple-
mentation, and you’ll be presented with a form that you’ll need to fill out to specify
your application’s Web Site settings. Just enter the URL that you eventually plan
to use for hosting your app as the Site URL and include the same domain as the
Site Domain. Facebook uses your Web Site settings as part of the OAuth flow, and
you’ll receive an error message during the OAuth dance if they’re not filled out
appropriately.

It may not be obvious, but perhaps the simplest way for you to get back to your devel-
opment application once you’ve left it is to just return to http://facebook.com/develop
ers (requires a login).

With the basic details of application registration out of the way, the next step is writing
a script that handles authentication and gets you an access token that you can use to
access APIs. The overall flow for the process is actually a little simpler than what you’ve
seen in previous chapters involving Twitter and LinkedIn. Our script will pop open a
web browser, you’ll sign into your Facebook account, and then it’ll present a special
code (your access token) that you’ll copy/paste into a prompt so that it can be saved
out to disk and used in future requests. Example 9-1 illustrates the process and is noth-
ing more than a cursory implementation of the flow described in “Desktop Application
Authentication”. A brief review of Facebook’s authentication documentation may be
helpful; refer back to “No, You Can’t Have My Password” on page 85 if you haven’t
read it already. However, note that the flow implemented in Example 9-1 for a desktop
application is a little simpler than the flow involved in authenticating a web app.

Example 9-1. Getting an OAuth 2.0 access token for a desktop app (facebook__login.py)

-*- coding: utf-8 -*-

import os
import sys
import webbrowser
import urllib

def login():

 # Get this value from your Facebook application's settings

 CLIENT_ID = ''

 REDIRECT_URI = \
 'http://miningthesocialweb.appspot.com/static/facebook_oauth_helper.html'

 # You could customize which extended permissions are being requested on the login
 # page or by editing the list below. By default, all the ones that make sense for
 # read access as described on http://developers.facebook.com/docs/authentication/
 # are included. (And yes, it would be probably be ridiculous to request this much
 # access if you wanted to launch a successful production application.)

274 | Chapter 9: Facebook: The All-in-One Wonder

 EXTENDED_PERMS = [
 'user_about_me',
 'friends_about_me',
 'user_activities',
 'friends_activities',
 'user_birthday',
 'friends_birthday',
 'user_education_history',
 'friends_education_history',
 'user_events',
 'friends_events',
 'user_groups',
 'friends_groups',
 'user_hometown',
 'friends_hometown',
 'user_interests',
 'friends_interests',
 'user_likes',
 'friends_likes',
 'user_location',
 'friends_location',
 'user_notes',
 'friends_notes',
 'user_online_presence',
 'friends_online_presence',
 'user_photo_video_tags',
 'friends_photo_video_tags',
 'user_photos',
 'friends_photos',
 'user_relationships',
 'friends_relationships',
 'user_religion_politics',
 'friends_religion_politics',
 'user_status',
 'friends_status',
 'user_videos',
 'friends_videos',
 'user_website',
 'friends_website',
 'user_work_history',
 'friends_work_history',
 'email',
 'read_friendlists',
 'read_requests',
 'read_stream',
 'user_checkins',
 'friends_checkins',
]

 args = dict(client_id=CLIENT_ID, redirect_uri=REDIRECT_URI,
 scope=','.join(EXTENDED_PERMS), type='user_agent', display='popup'
)

 webbrowser.open('https://graph.facebook.com/oauth/authorize?'

Tapping into Your Social Network Data | 275

 + urllib.urlencode(args))

 # Optionally, store your access token locally for convenient use as opposed
 # to passing it as a command line parameter into scripts...

 access_token = raw_input('Enter your access_token: ')

 if not os.path.isdir('out'):
 os.mkdir('out')

 filename = os.path.join('out', 'facebook.access_token')
 f = open(filename, 'w')
 f.write(access_token)
 f.close()

 print >> sys.stderr, \
 "Access token stored to local file: 'out/facebook.access_token'"

 return access_token

if __name__ == '__main__':
 login()

One important detail you’re probably wondering about is the definition of EXTEN
DED_PERMS, and a brief explanation is certainly in order. The first time you try to log in
to the application, it’ll notify you that the application is requesting lots of extended
permissions so that you can have maximum flexibility in accessing the data that’s avail-
able to you (Figure 9-3). The details of extended permissions are described in Face-
book’s authentication documentation, but the short story is that, by default, applica-
tions can only access some basic data from user profiles—such as name, gender, and
profile picture—and explicit permissions must be granted to access additional data.
The subtlety to observe here is that you might be able to see certain details about your
friends, such as things that they “like” or activity on their walls through your normal
Facebook account, but your app cannot access these same details unless you have granted
it explicit permission to do so. In other words, there’s a difference between what you’ll
see in your friends’ profiles when signed in to facebook.com and the data you’ll get
back when requesting information through the API. This is because it’s Facebook (not
you) who is exercising the platform to get data when you’re logged in to facebook.com,
but it’s you (as a developer) who is requesting data when you build your app.

If your app does not request extended permissions to access data but
tries to access it anyway, you may get back empty data objects as op-
posed to an explicit error message.

276 | Chapter 9: Facebook: The All-in-One Wonder

Figure 9-3. The Kitchen Sink: the sample dialog you would see if an application requested permission
to access everything available to it

Tapping into Your Social Network Data | 277

The Facebook platform’s documentation is continually evolving, and
they may not tell you everything you need to know about extended per-
missions. For example, it appears that in order to access religious or
political information for friends (your friends_religion_politics exten-
ded permission), those friends must have your app installed and
have explicitly authorized access to this data as well via their
user_religion_politics extended permission.

Now, outfitted with a shiny new access token that has permissions to access all of your
data, it’s time to move on to more interesting things.

Facebook’s Query APIs
As you’ve probably heard, the Facebook developer ecosystem is complex, continually
evolving,* and filled with many twists and turns involving the most sophisticated pri-
vacy controls the Web has ever seen. In addition to sporting a standard battery of REST
APIs and a more advanced SQL-like language for querying data in a manner similar to
SQL called Facebook Query Language (FQL), Facebook unveiled the Graph API and
the Open Graph protocol (OGP) in April 2010 at the F8 conference. In short, OGP is
a mechanism that enables you to make any web page an object in a rich social graph
by injecting some RDFa (more on this in a moment) metadata into the page, and the
Graph API is a simple and intuitive mechanism for querying the graph. Each object has
a particular type. At the time of this writing, the Graph API supports the following types
of objects, as described in the Graph API Reference:

Album
A photo album

Application
An individual application registered on the Facebook Platform

Checkin
A check-in made through Facebook Places

Event
A Facebook event

Group
A Facebook group

Link
A shared link

Note
A Facebook note

* It’s a good idea to bookmark and keep an eye on the developer roadmap to stay up to date.

278 | Chapter 9: Facebook: The All-in-One Wonder

Page
A Facebook page

Photo
An individual photo

Post
An individual entry in a profile’s feed

Status Message
A status message on a user’s wall

Subscription
An individual subscription from an application to get real-time updates for an ob-
ject type

User
A user profile

Video
An individual video

The Graph API Reference contains detailed documentation for each object type, de-
scribing the types of properties and connections you can expect to exist for each object.

Example 9-2 is the canonical example from the documentation that demonstrates how
to turn the IMDB’s page on The Rock into an object in the Open Graph protocol as
part of an XHTML document that uses namespaces. These bits of metadata have great
potential once realized at a massive scale, because they enable a URI like http://www
.imdb.com/title/tt0117500 to unambiguously represent any web page—whether it’s for
a person, company, product, etc.—in a machine-readable way and furthers the vision
for a semantic web.

Example 9-2. Sample RDFa for the Open Graph protocol

<html xmlns:og="http://ogp.me/ns#">
<head>
<title>The Rock (1996)</title>
<meta property="og:title" content="The Rock" />
<meta property="og:type" content="movie" />
<meta property="og:url" content="http://www.imdb.com/title/tt0117500/" />
<meta property="og:image" content="http://ia.media-imdb.com/images/rock.jpg" />
...
</head>
...
</html>

When considering the possibilities with OGP, be forward-thinking and creative, but
bear in mind that it’s brand new and still evolving. As it relates to the semantic web
and web standards in general, consternation about the use of “open” has surfaced and
various kinks in the spec are still being worked out It is essentially a single-vendor effort,
and it’s little more than on par with the capabilities of meta elements from the much

Tapping into Your Social Network Data | 279

earlier days of the Web. In effect, OGP is really more of a snowflake than a standard at
this moment, but the potential is in place for that to change, and many exciting things
may happen as the future unfolds and innovation takes place. We’ll return to the topic
of the semantic web in Chapter 10, where we briefly discuss its vast potential. Let’s
now turn back and hone in on how to put the Graph API to work by building a simple
Facebook app to mine social data.

Because of the titular similarity, it’s easy to confuse Google’s Social
Graph API with Facebook’s Graph API, even though they are quite dif-
ferent.

At its core, the Graph API is incredibly simple: substitute an object’s ID in the URI
http(s)://graph.facebook.com/ID to fetch details about the object. For example, fetching
the URL http://graph.facebook.com/http://www.imdb.com/title/tt0117500 in your web
browser would return the response in Example 9-3.

Example 9-3. A sample response for an Open Graph query to http://graph.facebook.com/http://
www.imdb.com/title/tt0117500

{
 "id": "114324145263104",
 "name": "The Rock (1996)",
 "picture": "http://profile.ak.fbcdn.net/hprofile-ak-snc4/hs344.snc4/41581...jpg",
 "link": "http://www.imdb.com/title/tt0117500/",
 "category": "Movie",
 "description": "Directed by Michael Bay. With Sean Connery, Nicolas Cage, ...",
 "likes" : 3
}

If you inspect the source for the URL http://www.imdb.com/title/tt0117500, you’ll find
that fields in the response correspond to the data in the meta tags of the page, and this
is no coincidence. The delivery of rich metadata in response to a simple query is the
whole idea behind the way OGP is designed to work. Where it gets more interesting is
when you explicitly request additional metadata for an object in the page by appending
the query string parameter metadata=1 to the request. A sample response for the query
https://graph.facebook.com/114324145263104?metadata=1 is shown in Example 9-4.

Example 9-4. A sample response for an Open Graph query to http://graph.facebook.com/http://
www.imdb.com/title/tt0117500?metadata=1 with the optional metadata included

{
 "id": "118133258218514",
 "name": "The Rock (1996)",
 "picture": "http://profile.ak.fbcdn.net/hprofile-ak-snc4/..._s.jpg",
 "link": "http://www.imdb.com/title/tt0117500",
 "category": "Movie",
 "website": "http://www.imdb.com/title/tt0117500",
 "description": "Directed by Michael Bay. With Sean Connery, Nicolas Cage, ...",

280 | Chapter 9: Facebook: The All-in-One Wonder

 "likes": 3,
 "metadata": {
 "connections": {
 "feed": "http://graph.facebook.com/http://www.imdb.com/title/tt0117500/feed",
 "posts": "http://graph.facebook.com/http://www.imdb.com/title/tt0117500/posts",
 "tagged": "http://graph.facebook.com/http://www.imdb.com/title/tt0117500/tagged",
 "statuses": "http://graph.facebook.com/http://www.imdb.com/title/...",
 "links": "http://graph.facebook.com/http://www.imdb.com/title/tt0117500/links",
 "notes": "http://graph.facebook.com/http://www.imdb.com/title/tt0117500/notes",
 "photos": "http://graph.facebook.com/http://www.imdb.com/title/tt0117500/photos",
 "albums": "http://graph.facebook.com/http://www.imdb.com/title/tt0117500/albums",
 "events": "http://graph.facebook.com/http://www.imdb.com/title/tt0117500/events",
 "videos": "http://graph.facebook.com/http://www.imdb.com/title/tt0117500/videos"
 },
 "fields": [
 {
 "name": "id",
 "description": "The Page's ID. Publicly available. A JSON string."
 },
 {
 "name": "name",
 "description": "The Page's name. Publicly available. A JSON string."
 },
 {
 "name": "category",
 "description": "The Page's category. Publicly available. A JSON string."
 },
 {
 "name": "likes",
 "description": "* The number of users who like the Page..."
 }
]
 },
 "type": "page"
}

The items in metadata.connections are pointers to other nodes in the graph that you
can crawl to get to other interesting bits of data. For example, you could follow the
“photos” link to pull down photos associated with the movie, and potentially walk
links associated with the photos to discover who posted them or see comments that
might have been made about them. In case it hasn’t already occurred to you, you are
also an object in the graph. Try visiting the same URL prefix, but substitute in your
own Facebook ID or username as the URL context and see for yourself. Given that you
are the logical center of your own social network, we’ll be revisiting this possibility at
length throughout the rest of this chapter. The next section digs deeper into Graph API
queries, and the section after it takes a closer look at FQL queries.

Exploring the Graph API one connection at a time

Facebook maintains an official Python SDK for the Graph API; just do an easy_install
facebook-python-sdk, and you’re off to the races. There are several nice examples of
how you could use this module to quickly get through the OAuth dance and build a

Tapping into Your Social Network Data | 281

full-blown Facebook app that’s hosted on a platform like Google App Engine. We’ll
just be narrowing in on some particular portions of the GraphAPI class (defined in
facebook.py), which we’ll use in standalone scripts. A few of these methods follow:

• get_object(self, id, **args)

Example: get_object("me", metadata=1)

• get_objects(self, id, **args)

Example: get_objects(["me", "some_other_id"], metadata=1)

• get_connections(self, id, connection_name, **args)

Example: get_connections("me", "friends", metadata=1)

• request(self, path, args=None, post_args=None)

Example: request("search", {"q" : "programming", "type" : "group"})

Unlike with other social networks, there don’t appear to be clearly
published guidelines about Facebook API rate limits. Although the
availability of the APIs seems to be quite generous, you should still
carefully design your application to use the APIs as little as possible
and handle any/all error conditions, just to be on the safe side. The
closest thing to guidelines you’re likely to find as of late 2010 are
developer discussions in forums.

The most common (and often, the only) keyword argument you’ll probably use is
metadata=1, in order to get back the connections associated with an object in addition
to just the object details themselves. Take a look at Example 9-5, which introduces the
GraphAPI class and uses its get_objects method to query for “programming groups”. It
relays an important characteristic about the sizes of the result sets you may get for many
types of requests.

Example 9-5. Querying the Open Graph for “programming” groups (facebook__graph_query.py)

-*- coding: utf-8 -*-

import sys
import json
import facebook
import urllib2
from facebook__login import login

try:
 ACCESS_TOKEN = open('out/facebook.access_token').read()
 Q = sys.argv[1]
except IOError, e:
 try:

 # If you pass in the access token from the Facebook app as a command line
 # parameter, be sure to wrap it in single quotes so that the shell
 # doesn't interpret any characters in it

282 | Chapter 9: Facebook: The All-in-One Wonder

 ACCESS_TOKEN = sys.argv[1]
 Q = sys.argv[2]
 except:
 print >> sys.stderr, \
 "Could not either find access token in 'facebook.access_token' or parse args."
 ACCESS_TOKEN = login()
 Q = sys.argv[1]

LIMIT = 100

gapi = facebook.GraphAPI(ACCESS_TOKEN)

Find groups with the query term in their name

group_ids = []
i = 0
while True:
 results = gapi.request('search', {
 'q': Q,
 'type': 'group',
 'limit': LIMIT,
 'offset': LIMIT * i,
 })
 if not results['data']:
 break

 ids = [group['id'] for group in results['data'] if group['name'
].lower().find('programming') > -1]

 # once groups stop containing the term we are looking for in their name, bail out

 if len(ids) == 0:
 break
 group_ids += ids

 i += 1

if not group_ids:
 print 'No results'
 sys.exit()

Get details for the groups

groups = gapi.get_objects(group_ids, metadata=1)

Count the number of members in each group. The FQL API documentation at
http://developers.facebook.com/docs/reference/fql/group_member hints that for
groups with more than 500 members, we'll only get back a random subset of up
to 500 members.

for g in groups:
 group = groups[g]
 conn = urllib2.urlopen(group['metadata']['connections']['members'])
 try:
 members = json.loads(conn.read())['data']

Tapping into Your Social Network Data | 283

 finally:
 conn.close()
 print group['name'], len(members)

Sample results for the query for “programming” are presented in Example 9-6, and it’s
no coincidence that the upper bound of the result sets approaches 500. As the comment
in the code notes, the FQL documentation states that when you query the group_mem
ber table, your results will be limited to 500 total items. Unfortunately, the Graph API
documentation is still evolving and, at the time of this writing, similar warnings are not
documented (although they hopefully will be soon). In counting the members of
groups, the takeaway is that you’ll often be working with a reasonably sized random
sample. “Visualizing Your Entire Social Network” on page 289 describes a different
scenario in which a somewhat unexpected truncation of results occurs, and how to
work around this by dispatching multiple queries.

Example 9-6. Sample results from Example 9-5

Graffiti Art Programming 492
C++ Programming 495
Basic Programming 495
Programming 215
C Programming 493
C programming language 492
Programming 490
ACM Programming Competitors 496
programming 494
COMPUTER PROGRAMMING 494
Programming with Python 494
Game Programming 494
ASLMU Programming 494
Programming 352
Programming 450
Programmation - Programming 480

A sample web application that encapsulates most of the example code from this chapter
and uses the same basic pattern is hosted on GAE, if you’d like to take it for a spin
before laying down some code of your own. Figure 9-4 illustrates the results of our
sample query for “programming” groups. Recall that you can install and fully customize
the GAE-powered Facebook app yourself if that’s a better option for you than running
scripts from a local console. In terms of productivity, it’s probably best to develop with
local scripts and then roll functionality into the GAE codebase once it’s ready so as to
maintain a speedy development cycle.

284 | Chapter 9: Facebook: The All-in-One Wonder

Figure 9-4. Sample query and results for “programming” groups—you can click on the links to crawl
through to the next level of the graph

Slicing and dicing data with FQL

As you learned in the previous section, there’s not much overhead involved in writing
simple routines to interact with the Graph API, because objects in the graph are simple
and you’re passed URLs that you can use as-is to walk the object’s connections. For
more advanced types of queries or certain workflows, however, you may find FQL to
be a better fit for the problem. Extensive FQL documentation exists online. I won’t go
into too much depth here since the online documentation is authoritative and con-

Tapping into Your Social Network Data | 285

stantly evolving with the platform, but the gist is predictable if you’re familiar with
basic SQL syntax. FQL queries have the form select [fields] from [table] where
[conditions], but various restrictions apply that prevent FQL from being anything
more than a carefully selected small subset of SQL. For example, only one table name
can appear in the from clause, and the conditions that can appear in the where clause
are limited (but usually adequate) and must be marked as indexed fields in the FQL
documentation. In terms of executing FQL queries on the Facebook platform at a
50,000-foot level, all that’s necessary is to send your FQL queries to one of two API
endpoints: https://api.facebook.com/method/fql.query or https://api.facebook.com/
method/fql.multiquery. The difference between them is discussed next.

Example 9-7 illustrates a simple FQL query that fetches the names, genders, and rela-
tionship statuses of the currently logged-in user’s friends.

Example 9-7. A nested FQL query that ties together user and connection data

select name, sex, relationship_status from user where uid in
 (select target_id from connection where source_id = me() and target_type = 'user')

This nested query works by first executing the subquery:

select target_id from connection where source_id = me() and target_type = 'user'

which produces a list of user ID values. The special me() directive is a convenient short-
cut that corresponds to the currently logged-in user’s ID, and the connection table is
designed to enable queries where you are looking up the currently logged-in user’s
friends. Note that while most connections stored in the connection table are among
users, other types of connections may exist among users and other object types, such
as 'page', so the presence of a target_type filter is important. The outer query is then
evaluated, which resolves to:

select name, sex, relationship_status from user where uid in (...)

from the user table. The FQL user table has a wealth of information that can enable
many interesting types of analysis on your friends. Check it out.

The general form of the results set from this FQL query is shown in Example 9-8.

Example 9-8. Sample FQL results query

[
 {
 "name": "Matthew Russell",
 "relationship_status": "Married",
 "sex": "male"
 },
 ...
]

An FQL multiquery works in essentially the same way, except that you can run multiple
queries and reference query results as table names using the hash symbol. Exam-
ple 9-9 is an equivalent FQL multiquery to the nested query shown previously.

286 | Chapter 9: Facebook: The All-in-One Wonder

Example 9-9. An FQL multiquery that ties together user and connections data

{
 "name_sex_relationships" : "select name, sex, relationship_status from user \
 where uid in (select target_id from #ids)",
 "ids" : "select target_id from connection where source_id = me() \
 and target_type = 'user'"
}

Note that whereas the single list of objects is returned from the nested query, the results
from both components of the FQL multiquery are returned, as Example 9-10
demonstrates.

Example 9-10. Sample FQL multiquery results

[
 {
 "fql_result_set": [
 {
 "target_id": -1
 },
 ...
],
 "name": "ids"
 },
 {
 "fql_result_set": [
 {
 "name": "Matthew Russell",
 "relationship_status": "Married",
 "sex": "male"
 },
 ...
],
 "name" : "name_sex_relationships"
 }
]

Programatically, the query logic is pretty simple and can be wrapped up into a small
class. Example 9-11 demonstrates an FQL class that can take a query from the com-
mand line and run it. Here are a couple of sample queries that you could try running:

$ python facebook__fql_query.py 'select name, sex, relationship_status
from user where uid in (select target_id from connection
where source_id = me())'

$ python facebook__fql_query.py '{"name_sex_relationships" : "select name,
sex, relationship_status from user where uid in (select target_id from #ids)",
"ids" : "select target_id from connection where source_id = me()"}'

Tapping into Your Social Network Data | 287

Example 9-11. Encapsulating FQL queries with a small Python class abstraction
(facebook__fql_query.py)

-*- coding: utf-8 -*-

import sys
from urllib import urlencode
import json
import urllib2
from facebook__login import login

class FQL(object):

 ENDPOINT = 'https://api.facebook.com/method/'

 def __init__(self, access_token=None):
 self.access_token = access_token

 def _fetch(cls, url, params=None):
 conn = urllib2.urlopen(url, data=urlencode(params))
 try:
 return json.loads(conn.read())
 finally:
 conn.close()

 def query(self, q):
 if q.strip().startswith('{'):
 return self.multiquery(q)
 else:
 params = dict(query=q, access_token=self.access_token, format='json')
 url = self.ENDPOINT + 'fql.query'
 return self._fetch(url, params=params)

 def multiquery(self, q):
 params = dict(queries=q, access_token=self.access_token, format='json')
 url = self.ENDPOINT + 'fql.multiquery'
 return self._fetch(url, params=params)

Sample usage...

if __name__ == '__main__':
 try:
 ACCESS_TOKEN = open('out/facebook.access_token').read()
 Q = sys.argv[1]
 except IOError, e:
 try:

 # If you pass in the access token from the Facebook app as a command line
 # parameter, be sure to wrap it in single quotes so that the shell
 # doesn't interpret any characters in it. You may also need to escape
 # the # character

 ACCESS_TOKEN = sys.argv[1]

288 | Chapter 9: Facebook: The All-in-One Wonder

 Q = sys.argv[2]
 except IndexError, e:
 print >> sys.stderr, \
 "Could not either find access token in 'facebook.access_token'
 or parse args."
 ACCESS_TOKEN = login()
 Q = sys.argv[1]

 fql = FQL(access_token=ACCESS_TOKEN)
 result = fql.query(Q)
 print json.dumps(result, indent=4)

The sample GAE app provided as part of this chapter’s source code detects and runs
FQL queries as well as Graph API queries, so you can use it as a sort of playground to
experiment with FQL. With some basic infrastructure for executing queries now in
place, the next section walks through some use cases for building data-powered visu-
alizations and UI widgets.

Visualizing Facebook Data
This section lays down some templates and introduces some good starting points for
analyzing and visualizing Facebook data. If you’ve been following along, you now have
the basic tools you need to get at anything the platform can provide. The types of
exercises we’ll explore in this section include:

• Visualizing all the mutual friendships in your social network

• Visualizing the mutual friendships within specific groups and for arbitrary criteria,
such as gender

• Building a simple data-driven game that challenges you to identify friends based
on where they live now and their hometowns

The list of possibilities goes on and on, and with the necessary boilerplate intact, you’ll
have no trouble customizing the scripts we’ll write to solve a variety of other problems.

Visualizing Your Entire Social Network
This section works through the process of fetching friendship information from your
Facebook account and visualizing it in interesting and useful ways, with an angle to-
ward using the JavaScript InfoVis Toolkit (JIT). The JIT offers some great example
templates that can easily be customized to whip up an interactive visualization.

Visualizing Facebook Data | 289

Visualizing with RGraphs

An RGraph† is a network visualization that organizes the display by laying out nodes
in concentric circles, starting from the center. RGraphs are available in many visuali-
zation toolkits, including the JIT. It’s worth taking a moment to explore the JIT’s
RGraph examples to familiarize yourself with the vast possibilities it offers.

Protovis’ Node-Link tree, that was introduced in “Hierarchical and k-
Means Clustering” on page 185, is essentially the same core visualiza-
tion, but the JIT is also worth having on hand and provides more inter-
active out-of-the-box examples that you might find easier to pick up and
run with. Having options is not a bad thing.

As you well know by this point in the book, most of the effort involved in connecting
the dots between fetching raw Facebook data and visualizing it is the munging that’s
necessary to get it into a format that’s consumable by the visualization. One of the data
formats accepted by the RGraph and other JIT graph visualizations is a predictable
JSON structure that consists of a list of objects, each of which represents a node and
its adjacencies. Example 9-12 conveys the general concept so that you have an idea of
our end goal. This structure shows that “Matthew” is connected to three other nodes
identified by ID values as defined by adjacencies. The data field provides additional
information about “Matthew” and, in this case, conveys a human-readable label about
his three connections along with what appears to be a normalized popularity score.

Example 9-12. Sample input that can be consumed by the JIT’s RGraph visualization

[
 {
 "adjacencies": [
 "2",
 "3",
 "4",
 ...
],
 "data": {
 "connections": "Mark
Luke
John",
 "normalized_popularity": 0.0079575596817,
 "sex" : "male"
 },
 "id": "1",
 "name": "Matthew"
 },
 ...
]

† Also commonly called radial graphs, radial trees, radial maps, and many other things that don’t necessarily
include the term “radial” or “radius.”

290 | Chapter 9: Facebook: The All-in-One Wonder

Let’s compute the mutual friendships that exist within your network of friends and
visualize this data as an RGraph. In other words, we’ll be computing all the friendships
that exist within your friend network, which should give us a good idea of who is
popular in your network as well as who isn’t so very well connected. There’s potential
value in knowing both of these things. At an abstract level, we just need to run a few
FQL queries to gather the data: one to calculate the IDs of your friends, another to
connect your friends in the graph, and a final query to grab any pertinent details we’d
like to lace into the graph, such as names, birthdays, etc. The following queries convey
the idea:

Get friend IDs

q = "select target_id from connection where \
 source_id = me() and target_type = 'user'"
my_friends = [str(t['target_id']) for t in fql.query(q)]

Calculate mutual friendships

q = "select uid1, uid2 from friend where uid1 in (%s) and uid2 in (%s)" %
 (",".join(my_friends), ",".join(my_friends),)
mutual_friendships = fql(q)

Grab additional details to decorate the graph

q = "select uid, first_name, last_name, sex from user where uid in (%s)" %
 (",".join(my_friends),)
names = dict([(unicode(u["uid"]), u["first_name"] + " " +
 u["last_name"][0] + ".") for u in fql(q)])

That’s the gist, but there is one not-so-well-documented detail that you may discover:
if you pass even a modest number of ID values into the second step when computing
the mutual friendships, you’ll find that you get back arbitrarily truncated results. This
isn’t completely unwarranted, given that you are asking the Facebook platform to ex-
ecute what’s logically an O(n2) operation on your behalf (a nested loop that compares
all your friends to one another), but the fact that you get back any data at all instead
of receiving an error message kindly suggesting that you pass in less data might catch
you off guard.

Just like everything else in the world, the Facebook platform isn’t per-
fect. Give credit where credit is due, and file bug reports as needed.

Fortunately, there’s a fix for this situation: just batch in the data through several queries
and aggregate it all. In code, that might look something like this:

mutual_friendships = []
N = 50
for i in range(len(my_friends)/N +1):
 q = "select uid1, uid2 from friend where uid1 in (%s) and uid2 in (%s)" %
 (",".join(my_friends), ",".join(my_friends[i*N:(i+1)*N]),)
 mutual_friendships += fql(query=q)

Visualizing Facebook Data | 291

Beyond that potential snag, the rest of the logic involved in producing the expected
output for the RGraph visualization is pretty straightforward and follows the pattern
just discussed. Example 9-13 demonstrates a working example that puts it all together
and produces additional JavaScript output that can be used for other analysis.

Example 9-13. Harvesting and munging friends data for the JIT’s RGraph visualization
(facebook__get_friends_rgraph.py)

-*- coding: utf-8 -*-

import os
import sys
import json
import webbrowser
import shutil
from facebook__fql_query import FQL
from facebook__login import login

HTML_TEMPLATE = '../web_code/jit/rgraph/rgraph.html'
OUT = os.path.basename(HTML_TEMPLATE)

try:
 ACCESS_TOKEN = open('out/facebook.access_token').read()
except IOError, e:
 try:

 # If you pass in the access token from the Facebook app as a command line
 # parameter, be sure to wrap it in single quotes so that the shell
 # doesn't interpret any characters in it. You may also need to escape
 # the # character

 ACCESS_TOKEN = sys.argv[1]
 except IndexError, e:
 print >> sys.stderr, \
 "Could not either find access token in 'facebook.access_token' or parse args."
 ACCESS_TOKEN = login()

fql = FQL(ACCESS_TOKEN)

get friend ids

q = \
 'select target_id from connection where source_id = me() and target_type =\'user\''
my_friends = [str(t['target_id']) for t in fql.query(q)]

now get friendships among your friends. note that this api appears to return
arbitrarily truncated results if you pass in more than a couple hundred friends
into each part of the query, so we perform (num friends)/N queries and aggregate
the results to try and get complete results
Warning: this can result in a several API calls and a lot of data returned that
you'll have to process

mutual_friendships = []
N = 50

292 | Chapter 9: Facebook: The All-in-One Wonder

for i in range(len(my_friends) / N + 1):
 q = 'select uid1, uid2 from friend where uid1 in (%s) and uid2 in (%s)' \
 % (','.join(my_friends), ','.join(my_friends[i * N:(i + 1) * N]))
 mutual_friendships += fql.query(q)

get details about your friends, such as first and last name, and create an accessible map
note that not every id will necessarily information so be prepared to handle those cases
later

q = 'select uid, first_name, last_name, sex from user where uid in (%s)' \
 % (','.join(my_friends),)
results = fql.query(q)
names = dict([(unicode(u['uid']), u['first_name'] + ' ' + u['last_name'][0] + '.'
) for u in results])

sexes = dict([(unicode(u['uid']), u['sex']) for u in results])

consolidate a map of connection info about your friends.

friendships = {}
for f in mutual_friendships:
 (uid1, uid2) = (unicode(f['uid1']), unicode(f['uid2']))
 try:
 name1 = names[uid1]
 except KeyError, e:
 name1 = 'Unknown'
 try:
 name2 = names[uid2]
 except KeyError, e:
 name2 = 'Unknown'

 if friendships.has_key(uid1):
 if uid2 not in friendships[uid1]['friends']:
 friendships[uid1]['friends'].append(uid2)
 else:
 friendships[uid1] = {'name': name1, 'sex': sexes.get(uid1, ''),
 'friends': [uid2]}

 if friendships.has_key(uid2):
 if uid1 not in friendships[uid2]['friends']:
 friendships[uid2]['friends'].append(uid1)
 else:
 friendships[uid2] = {'name': name2, 'sex': sexes.get(uid2, ''),
 'friends': [uid1]}

Emit JIT output for consumption by the visualization

jit_output = []
for fid in friendships:
 friendship = friendships[fid]
 adjacencies = friendship['friends']

 connections = '
'.join([names.get(a, 'Unknown') for a in adjacencies])
 normalized_popularity = 1.0 * len(adjacencies) / len(friendships)
 sex = friendship['sex']

Visualizing Facebook Data | 293

 jit_output.append({
 'id': fid,
 'name': friendship['name'],
 'data': {'connections': connections, 'normalized_popularity'
 : normalized_popularity, 'sex': sex},
 'adjacencies': adjacencies,
 })

Wrap the output in variable declaration and store into
a file named facebook.rgraph.js for consumption by rgraph.html

if not os.path.isdir('out'):
 os.mkdir('out')

HTML_TEMPLATE references some dependencies that we need to
copy into out/

shutil.rmtree('out/jit', ignore_errors=True)

shutil.copytree('../web_code/jit',
 'out/jit')

html = open(HTML_TEMPLATE).read() % (json.dumps(jit_output),)
f = open(os.path.join(os.getcwd(), 'out', 'jit', 'rgraph', OUT), 'w')
f.write(html)
f.close()

print >> sys.stderr, 'Data file written to: %s' % f.name

Write out another file that's standard JSON for additional analysis
and potential use later (by facebook_sunburst.py, for example)

json_f = open(os.path.join('out', 'facebook.friends.json'), 'w')
json_f.write(json.dumps(jit_output, indent=4))
json_f.close()

print 'Data file written to: %s' % json_f.name

Open up the web page in your browser

webbrowser.open('file://' + f.name)

If you have a very large friends network, you may need to filter the
friends you visualize by a meaningful criterion that makes the results
more manageable. See Example 9-16 for an example of filtering by group
by interactively prompting the user for input.

If all goes according to plan, you’ll have an interactive visualization of your entire social
network on hand. Figure 9-5 illustrates what this might look like for a very large social
network. The next section introduces some techniques for paring down the output to
something more manageable.

294 | Chapter 9: Facebook: The All-in-One Wonder

Figure 9-5. A sample RGraph computed with Facebook data for a fairly large network of 500+ people,
per Example 9-13 (top), and a much smaller RGraph of mutual friends who are members of a
particular group, as computed by Example 9-16 later in this chapter (bottom)

Visualizing with a Sunburst

A Sunburst visualization is a space-filling visualization for rendering hierarchical struc-
tures such as trees. It gets its name from its resemblance to sunburst images, such as
the one on the flag of the Imperial Japanese Army, as shown in Figure 9-6. The JIT’s
Sunburst implementation is as powerful as it is beautiful. Like the RGraph, it consumes
a simple graph-like JSON structure and exposes handy event handlers. But while a
Sunburst visualization consumes essentially the same data structure as an RGraph, its
layout yields additional insight almost immediately. You can easily see the relative

Visualizing Facebook Data | 295

degrees of intermediate nodes in the tree based upon how much area is taken up by
each layer in the Sunburst. For example, it’s not difficult to adapt the JIT’s example
implementation to render a useful interactive visualization of even a quite large social
network, along with what relative share of the population fits a given criterion, such as
gender. In fact, that’s exactly what is depicted in Figure 9-6. It shows that about two-
thirds of the members of this social network are female, with each of those members
appearing adjacent to that portion of the sector.

Example 9-14 demonstrates how to take the sample output from Example 9-13 and
transform it such that it can be consumed by a JIT Sunburst that segments your social
network by gender. Note that the $angularWidth parameter is a relative measure of the
angle used by each level of the tree, and is used by the script to scale the sector. The
area that each friend consumes is scaled according to their popularity and provides an
intuitive visual indicator. Friends who have privacy settings in place to prevent API
access to gender information will have gender values of an empty string and are simply
ignored.‡ The interactive version of the visualization also displays a tool tip that shows
a person’s mutual friends whenever you hover over a slice, as shown in Figure 9-6, so
that you can narrow in on people and get more specific.

Example 9-14. Harvesting and munging data for the JIT’s Sunburst visualization
(facebook__sunburst.py)

-*- coding: utf-8 -*-

import os
import sys
import json
import webbrowser
import shutil
from copy import deepcopy

HTML_TEMPLATE = '../web_code/jit/sunburst/sunburst.html'
OUT = os.path.basename(HTML_TEMPLATE)

Reuses out/facebook.friends.json written out by
facebook__get_friends_rgraph.py
DATA = sys.argv[1]
data = json.loads(open(DATA).read())

Define colors to be used in the visualization
for aesthetics

colors = ['#FF0000', '#00FF00', '#0000FF']

The primary output to collect input

jit_output = {
 'id': 'friends',
 'name': 'friends',

‡ Also commonly called “pie piece.”

296 | Chapter 9: Facebook: The All-in-One Wonder

 'data': {'$type': 'none'},
 'children': [],
 }

A convenience template

template = {
 'id': 'friends',
 'name': 'friends',
 'data': {'connections': '', '$angularWidth': 1, '$color': ''},
 'children': [],
 }

i = 0
for g in ['male', 'female']:

 # Create a gender object

 go = deepcopy(template)
 go['id'] += '/' + g
 go['name'] += '/' + g
 go['data']['$color'] = colors[i]

 # Find friends by each gender

 friends_by_gender = [f for f in data if f['data']['sex'] == g]
 for f in friends_by_gender:

 # Load friends into the gender object

 fo = deepcopy(template)
 fo['id'] = f['id']
 fo['name'] = f['name']
 fo['data']['$color'] = colors[i % 3]
 fo['data']['$angularWidth'] = len(f['adjacencies']) # Rank by global popularity
 fo['data']['connections'] = f['data']['connections'] # For the tooltip

 go['children'].append(fo)

 jit_output['children'].append(go)
 i += 1

Emit the output expected by the JIT Sunburst

if not os.path.isdir('out'):
 os.mkdir('out')

HTML_TEMPLATE references some dependencies that we need to
copy into out/

shutil.rmtree('out/jit', ignore_errors=True)

shutil.copytree('../web_code/jit',
 'out/jit')

Visualizing Facebook Data | 297

html = open(HTML_TEMPLATE).read() % (json.dumps(jit_output),)
f = open(os.path.join(os.getcwd(), 'out', 'jit', 'sunburst', OUT), 'w')
f.write(html)
f.close()

print 'Data file written to: %s' % f.name

Open up the web page in your browser

webbrowser.open('file://' + f.name)

Although the sample implementation only groups friends by gender and popularity,
you could produce a consumable JSON object that’s representative of a tree with mul-
tiple levels, where each level corresponds to a different criterion. For example, you
could visualize first by gender, and then by relationship status to get an intuitive feel
for how those two variables correlate in your social network.

Visualizing with spreadsheets (the old-fashioned way)

Although you might be envisioning yourself creating lots of sexy visualizations with
great visual appeal in the browser, it’a far more likely that you’ll want to visualize data
the old-fashioned way: in a spreadsheet. Assuming you saved the JSON output that
powered the RGraph in the previous section into a local file, you could very easily
crunch the numbers and produce a simple CSV format that you can load into a spread-
sheet to quickly get the gist of what the distribution of your friendships looks like—
i.e., a histogram showing the popularity of each of the friends in your social network.
Example 9-15 demonstrates how to quickly transform the data into a readily consum-
able CSV format.

298 | Chapter 9: Facebook: The All-in-One Wonder

Figure 9-6. The Sunburst visualization gets its name from its obvious similarity to symbols of the sun,
like that on the flag of the Japanese Imperial Army (top). This particular visualization demonstrates
that about 2/3 of the friends network is female and about 1/3 is male (bottom).

Visualizing Facebook Data | 299

Example 9-15. Exporting data so that it can easily be loaded into a spreadsheet for analysis
(facebook__popularity_spreadsheet.py)

-*- coding: utf-8 -*-

import os
import sys
import json
import operator

Reuses out/facebook.friends.json written out by
facebook__get_friends_rgraph.py
DATA = open(sys.argv[1]).read()
data = json.loads(DATA)

popularity_data = [(f['name'], len(f['adjacencies'])) for f in data]
popularity_data = sorted(popularity_data, key=operator.itemgetter(1))

csv_data = []
for d in popularity_data:
 csv_data.append('%s\t%s' % (d[0], d[1]))

if not os.path.isdir('out'):
 os.mkdir('out')

filename = os.path.join('out', 'facebook.spreadsheet.csv')
f = open(filename, 'w')
f.write('\n'.join(csv_data))
f.close()

print 'Data file written to: %s' % filename

Visualizing the data as a histogram yields interesting results because it provides a quick
image of how connected people are in the network. For example, if the network were
perfectly connected, the distribution would be flat. In Figure 9-7, you can see that the
second most popular person in the network has around half as many connections as
the most popular person in the network, and the rest of the relationships in the network
roughly follow a Zipf-like distribution§ with a long tail that very closely fits to a loga-
rithmic trendline.

A logarithmic distribution isn’t all that unexpected for a fairly large and diverse social
network. It’s inevitable that there will be a few highly connected individuals, with the
majority of folks having relatively few connections with one another compared to the
most popular individuals. In line with the Pareto principle, or the 80-20 rule, in this
instance, we might say that “20% of the people have 80% of the friends.”

§ This concept was introduced in “Data Hacking with NLTK” on page 205.

300 | Chapter 9: Facebook: The All-in-One Wonder

Visualizing Mutual Friendships Within Groups
The sample implementation provided in Example 9-13 attempts to visualize all the
mutual friendships in your social network. If you are running it in a modern browser
with good support for the canvas element, the JIT holds up surprisingly well for even
huge graphs. A click handler is included in the sample implementation: it displays the
selected node’s connections and a normalized popularity score (calculated as the num-
ber of connections divided by the total number of connections in your network) below
the graph. Viewing your entire friend network is surely interesting, but sooner rather
than later you’ll want to filter your friends by some meaningful criteria and analyze
smaller graphs.

There are lots of great filtering options available if your objective is to build out a nice
user interface around a small web app, but we’ll take the simplest possible approach
and filter the JSON output produced from Example 9-13 according to a specifiable
group criterion. Groups are the most logical starting point, and Example 9-16 demon-
strates how to implement this additional functionality. An advantage of filtering the
output from your global friendship network is that you’ll retain the complete "connec
tions" data for the rest of the network, so you’ll still be able to keep track of what other
friends a person is connected to even if those friends aren’t in the group. Keep in mind
that the possibilities for additional group analysis are vast: you could analyze whether
your male friends are more connected than your female friends, perform clique analysis
as described in “Clique Detection and Analysis” on page 110, or any number of other
possibilities.

Figure 9-7. Sample distribution of popularity in a Facebook friends network with a logarithmic
trendline (names omitted to protect the innocent)

Visualizing Facebook Data | 301

Example 9-16. Harvesting and munging data to visualize mutual friends with a particular group
(facebook__filter_rgraph_output_by_group.py)

-*- coding: utf-8 -*-

import os
import sys
import json
import facebook
import webbrowser
import shutil
from facebook__fql_query import FQL
from facebook__login import login

HTML_TEMPLATE = '../web_code/jit/rgraph/rgraph.html'
OUT = os.path.basename(HTML_TEMPLATE)

Reuses out/facebook.friends.json written out by
facebook__get_friends_rgraph.py

DATA = sys.argv[1]
rgraph = json.loads(open(DATA).read())

try:
 ACCESS_TOKEN = open('out/facebook.access_token').read()
except IOError, e:
 try:

 # If you pass in the access token from the Facebook app as a command line
 # parameter, be sure to wrap it in single quotes so that the shell
 # doesn't interpret any characters in it. You may also need to escape
 # the # character.

 ACCESS_TOKEN = sys.argv[2]
 except IndexError, e:
 print >> sys.stderr, \
 "Could not either find access token in 'facebook.access_token' or parse args."
 ACCESS_TOKEN = login()

gapi = facebook.GraphAPI(ACCESS_TOKEN)

groups = gapi.get_connections('me', 'groups')

Display groups and prompt the user

for i in range(len(groups['data'])):
 print '%s) %s' % (i, groups['data'][i]['name'])

choice = int(raw_input('Pick a group, any group: '))
gid = groups['data'][choice]['id']

Find the friends in the group

fql = FQL(ACCESS_TOKEN)
q = \

302 | Chapter 9: Facebook: The All-in-One Wonder

 """select uid from group_member where gid = %s and uid in
(select target_id from connection where source_id = me() and target_type = 'user')
""" \
 % (gid,)

uids = [u['uid'] for u in fql.query(q)]

Filter the previously generated output for these ids

filtered_rgraph = [n for n in rgraph if n['id'] in uids]

Trim down adjancency lists for anyone not appearing in the graph.
Note that the full connection data displayed as HTML markup
in "connections" is still preserved for the global graph.

for n in filtered_rgraph:
 n['adjacencies'] = [a for a in n['adjacencies'] if a in uids]

if not os.path.isdir('out'):
 os.mkdir('out')

HTML_TEMPLATE references some dependencies that we need to
copy into out/

shutil.rmtree('out/jit', ignore_errors=True)

shutil.copytree('../web_code/jit',
 'out/jit')

html = open(HTML_TEMPLATE).read() % (json.dumps(filtered_rgraph),)
f = open(os.path.join(os.getcwd(), 'out', 'jit', 'rgraph', OUT), 'w')
f.write(html)
f.close()

print 'Data file written to: %s' % f.name

Open up the web page in your browser

webbrowser.open('file://' + f.name)

A sample graph for a group who attended the same elementary school is illustrated in
Figure 9-5.

It would no doubt be interesting to compare the connectedness of different types of
groups, identify which friends participate in the most groups to which you also belong,
etc. But don’t spend all of your time in one place; the possibilities are vast.

If you’re using a modern browser that supports the latest and greatest
canvas element, you may be able to adapt the following JavaScript code
to save your graph as an image:

//grab the canvas element
var canvas = document.getElementById("infovis-canvas");
//now prompt a file download
window.location = canvas.toDataURL("image/png");

Visualizing Facebook Data | 303

Where Have My Friends All Gone? (A Data-Driven Game)
There are a number of interesting variables that you could correlate for analysis, but
everyone loves a good game every once in a while. This section lays the foundation for
a simple game you can play to see how well you know your friends, by grouping them
such that their hometowns and current locations are juxtaposed. We’ll be reusing the
tree widget from “Intelligent clustering enables compelling user experien-
ces” on page 183 as part of this exercise, and most of the effort will be put into the grunt
work required to transform data from an FQL query into a suitable format. Because
the grunt work is mostly uninteresting cruft, we’ll save some trees by displaying only
the FQL query and the final format. As always, the full source is available online at
http://github.com/ptwobrussell/Mining-the-Social-Web/blob/master/python_code/linke
din__get_friends_current_locations_and_hometowns.py.

The FQL query we’ll run to get the names, current locations, and hometowns is simple
and should look fairly familiar to previous FQL queries:

q = """select name, current_location, hometown_location from user where uid in
 (select target_id from connection where source_id = me())"""
results = fql(query=q)

Example 9-17 shows the final format that feeds the tree widget once you’ve invested
the sweat equity in massaging it into the proper format, and Example 9-18 shows the
Python code to generate it.

Example 9-17. Target JSON that needs to be produced for consumption by the Dojo tree widget

{
 "items": [
 {
 "name": " Alabama (2)",
 "children": [
 {
 "state": " Alabama",
 "children": [
 {
 "state": " Tennessee",
 "name": "Nashville, Tennessee (1)",
 "children": [
 {
 "name": "Joe B."
 }
]
 }
],
 "name": "Prattville, Alabama (1)",
 "num_from_hometown": 1
 }
]
 },
 {
 "name": " Alberta (1)",

304 | Chapter 9: Facebook: The All-in-One Wonder

 "children": [
 {
 "state": " Alberta",
 "children": [
 {
 "state": " Alberta",
 "name": "Edmonton, Alberta (1)",
 "children": [
 {
 "name": "Gina F."
 }
]
 }
],
 "name": "Edmonton, Alberta (1)",
 "num_from_hometown": 1
 }
]
 },
 ...
],
 "label": "name"
 }

The final widget ends up looking like Figure 9-8, a hierarchical display that groups your
friends first by where they are currently located and then by their hometowns. In
Figure 9-8, Jess C. is currently living in Tuscaloosa, AL but grew up in Princeton, WV.
Although we’re correlating two harmless variables here, this exercise helps you quickly
determine where most of your friends are located and gain insight into who has mi-
grated from his hometown and who has stayed put. It’s not hard to imagine deviations
that are more interesting or faceted displays that introduce additional variables, such
as college attended, professional affiliation, or marital status.

A simple FQL query is all that it took to fetch the essential data, but there’s a little work
involved in rolling up data items to populate the hierarchical tree widget. The source
code for the tree widget itself is identical to that in “Intelligent clustering enables com-
pelling user experiences” on page 183, and all that’s necessary in order to visualize the
data is to capture it into a file and point the tree widget to it. A fun improvement to the
user experience might be integrating Google Maps with the widget so that you can
quickly bring up locations you’re unfamiliar with on a map. Adding age and gender
information into this display could also be interesting if you want to dig deeper or take
another approach to clustering. Emitting some KML in a fashion similar to that de-
scribed in “Geographically Clustering Your Network” on page 193 and visualizing it
in Google Earth might be another possibility worth considering, depending on your
objective.

Visualizing Facebook Data | 305

Figure 9-8. How well do you know your friends? Find out by playing the smash hit, “Where are they
now?”, a game that’s just as informative as it is fun!

Example 9-18. Harvesting data and computing the target JSON as displayed in Example 9-17
(facebook__get_friends_current_locations_and_hometowns.py)

import sys
import json
import facebook
from facebook__fql_query import FQL
from facebook__login import login

try:
 ACCESS_TOKEN = open("facebook.access_token").read()
except IOError, e:
 try:
 # If you pass in the access token from the Facebook app as a command-line
 # parameter, be sure to wrap it in single quotes so that the shell
 # doesn't interpret any characters in it. You may also need to escape
 # the # character.
 ACCESS_TOKEN = sys.argv[1]
 except IndexError, e:
 print >> sys.stderr, "Could not either find access token" + \
 in 'facebook.access_token' or parse args. Logging in..."
 ACCESS_TOKEN = login()

306 | Chapter 9: Facebook: The All-in-One Wonder

Process the results of the following FQL query to create JSON output suitable for
consumption by a simple hierarchical tree widget:

fql = FQL(ACCESS_TOKEN)

q = \
 """select name, current_location, hometown_location from user where uid in
 (select target_id from connection where source_id = me() and target_type =
 'user')"""
results = fql.query(q)

First, read over the raw FQL query and create two hierarchical maps that group
people by where they live now and by their hometowns. We'll simply tabulate
frequencies, but you could easily grab additional data in the FQL query and use it
for many creative situations.

current_by_hometown = {}
for r in results:
 if r['current_location'] != None:
 current_location = r['current_location']['city'] + ', ' \
 + r['current_location']['state']
 else:
 current_location = 'Unknown'

 if r['hometown_location'] != None:
 hometown_location = r['hometown_location']['city'] + ', ' \
 + r['hometown_location']['state']
 else:
 hometown_location = 'Unknown'

 if current_by_hometown.has_key(hometown_location):
 if current_by_hometown[hometown_location].has_key(current_location):
 current_by_hometown[hometown_location][current_location] += \
 [r['name']]
 else:
 current_by_hometown[hometown_location][current_location] = \
 [r['name']]
 else:
 current_by_hometown[hometown_location] = {}
 current_by_hometown[hometown_location][current_location] = \
 [r['name']]

There are a lot of different ways you could slice and dice the data now that
it's in a reasonable data structure. Let's create a hierarchical
structure that lends itself to being displayed as a tree.

items = []
for hometown in current_by_hometown:
 num_from_hometown = sum([len(current_by_hometown[hometown][current])
 for current in current_by_hometown[hometown]])
 name = '%s (%s)' % (hometown, num_from_hometown)
 try:
 hometown_state = hometown.split(',')[1]
 except IndexError:
 hometown_state = hometown

Visualizing Facebook Data | 307

 item = {'name': name, 'state': hometown_state,
 'num_from_hometown': num_from_hometown}

 item['children'] = []
 for current in current_by_hometown[hometown]:
 try:
 current_state = current.split(',')[1]
 except IndexError:
 current_state = current

 item['children'].append({'name': '%s (%s)' % (current,
 len(current_by_hometown[hometown][current])),
 'state': current_state, 'children'
 : [{'name': f[:f.find(' ') + 2] + '.'}
 for f in
 current_by_hometown[hometown][current]]})

 # Sort items alphabetically by state. Further roll-up by state could
 # be done here if desired.

 item['children'] = sorted(item['children'], key=lambda i: i['state'])
 items.append(item)

Optionally, roll up outer-level items by state to create a better user experience
in the display. Alternatively, you could just pass the current value of items in
the final statement that creates the JSON output for smaller data sets.

items = sorted(items, key=lambda i: i['state'])
all_items_by_state = []
grouped_items = []
current_state = items[0]['state']
num_from_state = items[0]['num_from_hometown']
for item in items:
 if item['state'] == current_state:
 num_from_state += item['num_from_hometown']
 grouped_items.append(item)
 else:
 all_items_by_state.append({'name': '%s (%s)' % (current_state,
 num_from_state), 'children': grouped_items})
 current_state = item['state']
 num_from_state = item['num_from_hometown']
 grouped_items = [item]
all_items_by_state.append({'name': '%s (%s)' % (current_state,
 num_from_state), 'children': grouped_items})

Finally, emit output suitable for consumption by a hierarchical tree widget

print json.dumps({'items': all_items_by_state, 'label': 'name'},
indent=4)

308 | Chapter 9: Facebook: The All-in-One Wonder

Visualizing Wall Data As a (Rotating) Tag Cloud
As with any other source of unstructured data, analyzing the language used on your
wall or in your news feed can be an interesting proposition. There are a number of tag
cloud widgets that you can find on the Web, and they all take the same input—
essentially, a frequency distribution. But why visualize data with an ordinary tag cloud
when you could use a customizable and interactive tag cloud? Recall that there just so
happens to be a quite popular open source rotating tag cloud called WP-Cumulus that
puts on quite a nice show.‖ All that’s needed to put it to work is to produce the simple
input format that it expects, and feed that input format into a template with the stand-
ard HTML boilerplate in it. For brevity, the boilerplate won’t be repeated here. See
http://github.com/ptwobrussell/Mining-the-Social-Web/blob/master/web_code/dojo/face
book.current_locations_and_hometowns.html.

Example 9-19 presents some minimal logic to grab several pages of news data and
compute a simple JSON structure that’s a list of [term, URL, frequency] tuples that
can be fed into an HTML template. We’ll pass in empty strings for the URL portion of
those tuples, but with a little extra work, you could introduce additional logic that
maintains a map of which terms appeared in which posts so that the terms in the tag
cloud could point back to source data. Note that since we’re fetching multiple pages
of data from the Graph API in this example, we’ve simply opted to interface directly
with the API endpoint for your Facebook wall.

Example 9-19. Harvesting and munging data for visualization as a WP-Cumulus tag cloud
(facebook__tag_cloud.py)

-*- coding: utf-8 -*-

import os
import sys
import urllib2
import json
import webbrowser
import nltk
from cgi import escape
from facebook__login import login

try:
 ACCESS_TOKEN = open('out/facebook.access_token').read()
except IOError, e:
 try:

 # If you pass in the access token from the Facebook app as a command line
 # parameter, be sure to wrap it in single quotes so that the shell doesn't
 # interpret any characters in it. You may also need to escape the # character

 ACCESS_TOKEN = sys.argv[1]
 except IndexError, e:

‖ It was introduced in “Visualizing Tweets with Tricked-Out Tag Clouds” on page 158.

Visualizing Facebook Data | 309

 print >> sys.stderr, \
 "Could not find local access token or parse args. Logging in..."
 ACCESS_TOKEN = login()

BASE_URL = 'https://graph.facebook.com/me/home?access_token='
HTML_TEMPLATE = '../web_code/wp_cumulus/tagcloud_template.html'
OUT_FILE = 'out/facebook.tag_cloud.html'
NUM_PAGES = 5
MIN_FREQUENCY = 3
MIN_FONT_SIZE = 3
MAX_FONT_SIZE = 20

Loop through the pages of connection data and build up messages

url = BASE_URL + ACCESS_TOKEN
messages = []
current_page = 0
while current_page < NUM_PAGES:
 data = json.loads(urllib2.urlopen(url).read())
 messages += [d['message'] for d in data['data'] if d.get('message')]
 current_page += 1
 url = data['paging']['next']

Compute frequency distribution for the terms

fdist = nltk.FreqDist([term for m in messages for term in m.split()])

Customize a list of stop words as needed

stop_words = nltk.corpus.stopwords.words('english')
stop_words += ['&', '.', '?', '!']

Create output for the WP-Cumulus tag cloud and sort terms by freq along the way

raw_output = sorted([[escape(term), '', freq] for (term, freq) in fdist.items()
 if freq > MIN_FREQUENCY and term not in stop_words],
 key=lambda x: x[2])

Implementation adapted from
http://help.com/post/383276-anyone-knows-the-formula-for-font-s

min_freq = raw_output[0][2]
max_freq = raw_output[-1][2]

def weightTermByFreq(f):
 return (f - min_freq) * (MAX_FONT_SIZE - MIN_FONT_SIZE) / (max_freq
 - min_freq) + MIN_FONT_SIZE

weighted_output = [[i[0], i[1], weightTermByFreq(i[2])] for i in raw_output]

Substitute the JSON data structure into the template

html_page = open(HTML_TEMPLATE).read() % (json.dumps(weighted_output),)

310 | Chapter 9: Facebook: The All-in-One Wonder

f = open(OUT_FILE, 'w')
f.write(html_page)
f.close()

print 'Date file written to: %s' % f.name

Open up the web page in your browser

webbrowser.open('file://' + os.path.join(os.getcwd(), OUT_FILE))

Figure 9-9 shows some sample results. The data for this tag cloud was collected during
a Boise State versus Virginia Tech football game. Not surprisingly, the most common
word in news feeds is “I”. All in all, that’s not a lot of effort to produce a quick visual-
ization of what people are talking about on your wall, and you could easily extend it
to get the gist of any other source of textual data. If you want to pursue automatic
construction of a tag cloud with interesting content, however, you might want to con-
sider incorporating some of the more advanced filtering and NLP techniques intro-
duced earlier in the book. This way, you’re specifically targeting terms that are likely
to be entities as opposed to performing simple frequency analysis. Recall that Chap-
ter 8 provided a fairly succinct overview of how you might go about accomplishing
such an objective.

Closing Remarks
You can literally do just about anything social that you can imagine on Facebook, and
the vast amounts of data that it exposes through powerful APIs provide huge oppor-
tunities for creating smart and amazing data-driven applications. The cursory treatment
we’ve given the Facebook platform in this chapter doesn’t even scratch the surface of
the possibilities, but it hopefully has given you a lot of tools that you can use to dig
deeper and perhaps become the creator of the next great (data-driven) Facebook app.

As a further exercise, you could consider visualizing the unstructured text on your
friends’ walls or group walls with a tag cloud, but applying the kinds of entity-centric
analytics that were introduced in Chapter 8 instead of using the trivial tokenization
scheme we used in this chapter. It could also be interesting to dig into the structured
data available via the Graph API to discover the chattiest person in your network based
on the number of overall statuses or comments that your friends post. Another great
idea would be to try to cluster your friends based on what they Like, and then analyze
those preferences in a pivot table or graph them.

Closing Remarks | 311

Figure 9-9. A rotating tag cloud that’s highly customizable and requires very little effort to get up and
running

312 | Chapter 9: Facebook: The All-in-One Wonder

CHAPTER 10

The Semantic Web: A Cocktail
Discussion

While the previous chapters attempted to provide an overview of the social web and
motivate you to get busy hacking on data, it seems appropriate to wrap up with a brief
postscript on the semantic web. This short discussion makes no attempt to regurgitate
the reams of interesting mailing list discussions, blog posts, and other sources of in-
formation that document the origin of the Web, how it has revolutionized just about
everything in our lives in under two decades, and how the semantic web has always
been a part of that vision. It does, however, aim to engage you in something akin to a
cocktail discussion that, while glossing over a lot of the breadth and depth of these
issues, hopefully excites you about the possibilities that lie ahead.

An Evolutionary Revolution?
Let’s start out by dissecting the term “semantic web.” Given that the Web is all about
sharing information and that a working definition of semantics is “enough meaning to
result in an action,”* it’s not a very big leap to deduce that the semantic web is mostly
about representing knowledge in a very meaningful way. But let’s take that one step
further and not assume that it’s a human who is consuming the information that’s
represented. Let’s consider the possibilities that could be realized if information were
shared in a fully machine-understandable way—a way that is unambiguous enough that
a reasonably sophisticated user agent like a web robot could extract, interpret, and use
the information to make important decisions. Some steps have been made in this di-
rection: for instance, we discussed how microformats already make this possible for
certain domains in Chapter 2, and in Chapter 9 we looked at how Facebook is aggres-
sively bootstrapping an explicit graph construct into the Web with its Open Graph

* As defined in Programming the Semantic Web, by Toby Segaran, Jamie Taylor, and Colin Evans (O’Reilly).

313

protocol. But before we get too pie-in-the-sky, let’s back up for just a moment and
reflect on how we got to where we are right now.

The Internet is just a network of networks,† and what’s very fascinating about it from
a technical standpoint is how layers of increasingly higher-level protocols build on top
of lower-level protocols to ultimately produce a fault-tolerant worldwide computing
infrastructure. In our online activity, we rely on dozens of protocols every single day,
without even thinking about it. However, there is one ubiquitous protocol that is hard
not to think about explicitly from time to time: HTTP, the prefix of just about every
URL that you type into your browser, the enabling protocol for the extensive universe
of hypertext documents (HTML pages), and the links that glue them all together into
what we know as the Web. But as you’ve known for a long time, the Web isn’t just
about hypertext; it includes various embedded technologies such as JavaScript, Flash,
and emerging HTML5 assets such as audio and video streams. All of that rich interac-
tion makes the term “hypertext” sound a little antiquated, doesn’t it?

The notion of a cyberworld of documents, platforms, and applications that we can
interact with via modern-day browsers (including ones on mobile or tablet devices)
over HTTP is admittedly fuzzy, but it’s probably pretty close to what most people think
of when they hear the term “the Web.” To a degree, the motivation behind the Web
2.0 thought process that emerged back in 2004 was to more precisely define the in-
creasingly blurry notion of exactly what the Web was and what it was becoming. Along
those lines, some folks think of the Web as it existed from its inception until the present
era of highly interactive web applications and user collaboration as being Web 1.0, the
current era of Rich Internet Applications (RIAs) and collaboration as the Web 2.x era,
and the era of semantic karma that’s yet to come as Web 3.0 (see Table 10-1). At present,
there’s no real consensus about what Web 3.0 really means, but most discussions of
the subject generally include the phrase “semantic web” and the notion of information
being consumed and acted upon by machines in ways that are not yet possible at web
scale. For example, it’s still very difficult for machines to extract and make inferences
about the facts contained in documents available online. Keyword searching and heu-
ristics can certainly provide listings of very relevant search results, but human intelli-
gence is still required to interpret and synthesize the information in the documents
themselves. Whether Web 3.0 and the semantic web are really the same thing is open
for debate; however, it’s generally accepted that the term semantic web refers to a web
that’s much like the one we already know and love, but that has evolved to the point
where machines can extract and act on the information contained in documents at a
granular level.

† Inter-net literally implies “mutual or cooperating networks.”

314 | Chapter 10: The Semantic Web: A Cocktail Discussion

Table 10-1. Various manifestations/eras of the Web and their virtues

Manifestation/era Virtues

Internet Application protocols such as SMTP, FTP, BitTorrent, HTTP, etc.

Web 1.0 Mostly static HTML pages and hyperlinks

Web 2.0 Platforms, collaboration, rich user experiences

Social web (Web 2.x ???) People and their virtual and real-world social connections and activities

Web 3.0 (the semantic web) Prolific amounts of machine-understandable content

Man Cannot Live on Facts Alone
The semantic web’s fundamental construct for representing knowledge is called a tri-
ple, which is a highly intuitive and very natural way of expressing a fact. As an example,
the sentence we’ve considered on many previous occasions—“Mr. Green killed Colonel
Mustard in the study with the candlestick”—expressed as a triple might be something
like (Mr. Green, killed, Colonel Mustard), where the constituent pieces of that triple
refer to the subject, predicate, and object of the sentence. The Resource Description
Framework (RDF) is the semantic web’s model for defining and enabling the exchange
of triples. RDF is highly extensible in that while it provides a basic foundation for
expressing knowledge, it can also be used to define specialized vocabularies called
ontologies that provide precise semantics for modeling specific domains. More than a
passing mention of specific semantic web technologies such as RDF, RDFa, RDF
Schema, and OWL would be well out of scope here at the eleventh hour, but we will
work through a high-level example that attempts to explain some of the hype around
the semantic web in general.

Open-World Versus Closed-World Assumptions
One interesting difference between the way inference works in logic programming lan-
guages such as Prolog‡ as opposed to in other technologies, such as the RDF stack, is
whether they make open-world or closed-world assumptions about the universe. Logic
programming languages such as Prolog and most traditional database systems assume
a closed world, while RDF technology generally assumes an open world. In a closed
world, everything that you haven’t been explicitly told about the universe should be
considered false, whereas in an open world, everything you don’t know is arguably
more appropriately handled as being undefined (another way of saying “unknown”).
The distinction is that reasoners that assume an open world will not rule out
interpretations that include facts that are not explicitly stated in a knowledge base,
whereas reasoners that assume the closed world of the Prolog programming language

‡ You’re highly encouraged to check out a bona fide logic-based programming language like Prolog that’s
written in a paradigm designed specifically so that you can represent knowledge and deduce new information
from existing facts. GNU Prolog is a fine place to start.

Man Cannot Live on Facts Alone | 315

or most database systems will rule out facts that are not explicitly stated. Furthermore,
in a system that assumes a closed world merging contradictory knowledge would gen-
erally trigger an error, while a system assuming an open world may try to make new
inferences that somehow reconcile the contradictory information. As you might imag-
ine, open-world systems are quite flexible and can lead to some very interesting co-
nundrums; the potential can become especially pronounced when disparate knowledge
bases are merged.

Intuitively, you might think of it like this: systems predicated upon closed-world rea-
soning assume that the data they are given is complete, and they are typically non-
monotonic in the sense that it is not the case that every previous fact (explicit or inferred)
will still hold when new ones are added. In contrast, open-world systems make no such
assumption about the completeness of their data and are monotonic. As you might
imagine, there is substantial debate about the merits of making one assumption versus
the other. As someone interested in the semantic web, you should at least be aware of
the issue. As the matter specifically relates to RDF, official guidance from the W3C
documentation states:§

To facilitate operation at Internet scale, RDF is an open-world framework that allows
anyone to make statements about any resource. In general, it is not assumed that com-
plete information about any resource is available. RDF does not prevent anyone from
making assertions that are nonsensical or inconsistent with other statements, or the world
as people see it. Designers of applications that use RDF should be aware of this and may
design their applications to tolerate incomplete or inconsistent sources of information.

You might also check out Peter Patel-Schneider and Ian Horrocks’ “Position Paper: A
Comparison of Two Modelling Paradigms in the Semantic Web” if you’re interested
in pursuing this topic further. Whether you decide to dive into this topic right now,
keep in mind that the data that’s available on the Web is incomplete, and that making
a closed-world assumption (i.e., considering all unknown information emphatically
false) will entail severe consequences sooner rather than later.

Inferencing About an Open World with FuXi
Foundational languages such as RDF Schema and OWL are designed so that precise
vocabularies can be used to express facts such as the triple (Mr. Green, killed, Colonel
Mustard) in a machine-readable way, and this is a necessary but not sufficient condition
for the semantic web to be fully realized. Generally speaking, once you have a set of
facts, the next step is to perform inference over the facts and draw conclusions that
follow from the facts. The concept of formal inference dates back to at least ancient
Greece with Aristotle’s syllogisms, and the obvious connection to how machines can
take advantage of it has not gone unnoticed by researchers interested in artificial
intelligence for the past 50 or so years. The Java-based landscape that’s filled with
enterprise-level options such as Jena and Sesame certainly seems to be where most of

§ See http://www.w3.org/TR/rdf-concepts/.

316 | Chapter 10: The Semantic Web: A Cocktail Discussion

the heavyweight action resides, but fortunately, we do have a couple of solid options
to work with in Python.

One of the best Pythonic options capable of inference that you’re likely to encounter
is FuXi. FuXi is a powerful logic-reasoning system for the semantic web that uses a
technique called forward chaining to deduce new information from existing informa-
tion by starting with a set of facts, deriving new facts from the known facts by applying
a set of logical rules, and repeating this process until a particular conclusion can be
proved or disproved or there are no more new facts to derive. The kind of forward
chaining that FuXi delivers is said to be both sound, because any new facts that are
produced are true, and complete, because any facts that are true can eventually be pro-
ven. A full-blown discussion of propositional and first-order logic could easily fill a
book; if you’re interested in digging deeper, the classic text Artificial Intelligence: A
Modern Approach by Stuart Russell and Peter Norvig (Prentice Hall) is probably the
most comprehensive resource.

To demonstrate the kinds of inferencing capabilities a system such as FuXi can provide,
let’s consider the famous example of Aristotle’s syllogism‖ in which you are given a
knowledge base that contains the facts “Socrates is a man” and “All men are mortal,”
which allows you to deduce that “Socrates is mortal.” While this problem may seem
too trivial, keep in mind that the same deterministic algorithms that produce the new
fact that “Socrates is mortal” work the very same way when there are significantly more
facts available—and those new facts may produce additional new facts, which produce
additional new facts, and so on. For example, consider a slightly more complex knowl-
edge base containing a few additional facts:

• Socrates is a man

• All men are mortal

• Only gods live on Mt Olympus

• All mortals drink whisky

• Chuck Norris lives on Mt Olympus

If presented with the given knowledge base and then posed the question, “Does Socrates
drink whisky?”, you would first have to deduce the fact that “Socrates is mortal” before
you could deduce the follow-on fact that “Socrates drinks whisky.” To illustrate how
all of this would work in code, consider the same knowledge base now expressed in
Notation3 (N3), as shown in Example 10-1. N3 is a simple yet powerful syntax that
expresses facts and rules in RDF. While there are many different formats for expressing
RDF, many semantic web tools choose N3 because its readability and expressiveness
make it accessible.

‖ In modern parlance, a syllogism is more commonly called an “implication.”

Man Cannot Live on Facts Alone | 317

Example 10-1. A small knowledge base expressed with Notation3

#Assign a namespace for logic predicates
@prefix log: <http://www.w3.org/2000/10/swap/log#> .

#Assign a namespace for the vocabulary defined in this document
@prefix : <MiningTheSocialWeb#> .

#Socrates is a man
:Socrates a :Man.

@forAll :x .

#All men are mortal: Man(x) => Mortal(x)
{ :x a :Man } log:implies { :x a :Mortal } .

#Only gods live at Mt Olympus: Lives(x, MtOlympus) <=> God(x)
{ :x :lives :MtOlympus } log:implies { :x a :god } .
{ :x a :god } log:implies { :x :lives :MtOlympus } .

#All mortals drink whisky: Mortal(x) => Drinks(x, whisky)
{ :x a :Man } log:implies { :x :drinks :whisky } .

#Chuck Norris lives at Mt Olympus: Lives(ChuckNorris, MtOlympus)
:ChuckNorris :lives :MtOlympus .

Running FuXi with the --ruleFacts option tells it to parse the facts from the input
source that you can specify with the --rules option and to accumulate additional facts
from the source. You should see output similar to that shown in Example 10-2 if you
run FuXi from the command line. Note that FuXi should appear in your path after you
easy_install fuxi.

Example 10-2. Results of running FuXi from the command line on the knowledge base in
Example 10-1

$ FuXi --rules=foo.n3 --ruleFacts

@prefix _7: <file:///Users/matthew/MiningTheSocialWeb#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

 _7:ChuckNorris a _7:god.

 _7:Socrates a _7:Mortal;
 _7:drinks _7:whisky.

The output of the program tells us a few things that weren’t explicitly stated in the
initial knowledge base: Chuck Norris is a god, Socrates is a mortal, and Socrates drinks
whisky. Although deriving these facts may seem obvious to most human beings, it’s
quite another story for a machine to have derived them—and that’s what makes things
exciting.

318 | Chapter 10: The Semantic Web: A Cocktail Discussion

It should be noted that the careless assertion of facts about Chuck Norris
(even in the context of a sample knowledge base) could prove harmful
to your health or to the life of your computer.# You have been duly
warned.

If this simple example excites you, by all means, dig further into FuXi and the potential
the semantic web holds. The semantic web is arguably much more advanced and com-
plex than the social web, and investigating it is certainly a very worthy pursuit—
especially if you’re excited about the possibilities that inference brings to social data.

Hope
While the intentional omission of discussion of the semantic web throughout the bulk
of this short book may have created the impression of an arbitrary and rigid divide
between the social and semantic webs, the divide is actually quite blurry and constantly
in flux. It is very likely the case that the undeniable proliferation of social data on the
Web, combined with initiatives such as the microformats published by parties ranging
from the Food Network to LinkedIn, Facebook’s Open Graph protocol, and the crea-
tive efforts of data hackers such as yourself are greatly accelerating the realization of a
semantic web that may not be all that different from the one that’s been so overinflated
with hype over the past 15 years. The proliferation of social data has the potential to
be a great catalyst for the development of a semantic web that will enable agents to
make nontrivial actions on our behalf. We’re not there yet, but be hopeful! Or, to put
it another way, at least consider the wise words of Epicurus, who perhaps said it best:
“Don’t spoil what you have by desiring what you don’t have; but remember that what
you now have was once among the things only hoped for.”

#See http://www.chucknorrisfacts.com.

Hope | 319

Index

Symbols
3D graph visualization, interactive, 116
80-20 rule (Pareto principle), xiii, 300
@ (at symbol), beginning Twitter usernames,

11

A
access token (OAuth) for Facebook desktop

app, 272–278
access token for Facebook application, 272
ActivePython, 1
address-book data, exporting LinkedIn

connections as, 169
agglomerative clustering, 185
Ajax toolkits, 183
analytics, quality of (entity-centric analysis),

267–269
API calls, Twitter rate limits on, 10
Aristotle, syllogisms, 317
association metrics, 175, 230
authentication, 84

(see also OAuth)
Facebook desktop application, 274

authorization (see OAuth)
“The Automatic Creation of Literature

Abstracts”, 250

B
B-Trees, 60
BeautifulSoup, 23
Berners-Lee, Tim, xv
BigramAssociationMeasures class, 175
BigramAssocMeasures class, 226
bigrams, 224–231

collocations, contingency tables, and
scoring functions, 228–231

computing for a sentence using NLTK, 225
computing, using NLTK in the interpreter,

175
using NLTK to compute collocations, 225

binomial distribution, 230
blogs, 239

harvesting data from by parsing feeds, 245
summarizing Tim O’Reilly Radar blog post

(example), 252
using NLTK’s tools to parse blog data, 246

branching-factor calculations for graphs of
varying depths, 29

breadth-first techniques
brief analysis of, 28
using breadth-first search to crawl XFN

links, 25
browsers

Chrome, Graph Your Inbox Extension, 81
support for canvas element, 301

Buzz (see Google Buzz)
buzz module, 204

C
Cantor, Georg, 95
canvas element, support by browsers, 301
canviz tool, 17
cardinality of sets, 95
chi-square, 231
Chrome, Graph Your Inbox Extension, 81
chunking, 244
chunks, 242
circo tool, 15

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

321

cliques, detecting and analyzing in Twitter
friendship data, 110–113

closed-world versus open-world assumptions,
316

cluster module, 185
clustering

common similarity metrics for, 174
contacts by job title, 172
hierarchical, 185
incorporating random sampling to improve

performance, 182
intelligent, enabling compelling user

experiences, 183
k-means, 187
LinkedIn network geographically, 193

mapping with Dorling Cartograms, 198
mapping with Google Earth, 194–197

scalable, high cost of, 181
Tutorial on Clustering Algorithms, 188
using cosine similarity to cluster posts, 219–

221
using greedy approach, 178

code examples for this book, xv
collections.Counter class, 9
collocations, 224

computing for a sentence using NLTK, 225
contingency tables and scoring functions,

228–231
using NLTK to compute similar to

nltk.Text.collocations demo
function, 225

comma-separated values files (see CSV files)
community structures, visualizing in Twitter

search results, 162–166
company names, standardizing, 169
concurrency support, Erlang programming

language, 51
confidence intervals, 267
connected_components(), 13
connections, exporting from LinkedIn, 169
consumer_key and consumer_secret, obtaining

for Twitter application, 90
contexts

grounding search terms in, 236
semantics and, 241

contingency tables, 226
definition and example of, 228

cosine similarity, 217
clustering posts, 219–221

limitations of, 236
theory behind, 217

CouchDB, 48–67
aggregate view of test database and an

individual document, 49
B-Tree data structure, 60
bulk loading documents into, 51
configuring for couchdb-lucene awareness,

64
document analysis with, 48
map/reduce-inspired frequency analysis

with, 55
frequency by date/time range, 56
frequency by sender and recipient, 60

RESTful API, 63
sorting documents by date/time value, 53
sorting documents by value, 61
utilizing map/reduce functionality, 52
view functions in design document, 53

couchdb-lucene
querying tweet data, 133
text-based indexing, 63
using to get full-text indexing, 64–67

CouchDBBulkReader, 69
couchpy executable, 53
countably infinite sets, 95
Counter class, 9
cPickle module, pickling your data, 8
cross-validation, 269
CSV (comma-separated values) files, 169

normalizing LinkedIn contact data, 174
csv module, 169
curl, 85

D
data hacking tutorial, 1–17

collecting and manipulating Twitter data,
4–15

frequency analysis and lexical diversity,
7–14

tinkering with Twitter API, 4–7
visualizing tweet graphs, 14–15

installing Python development tools, 1
Data Structures section, Python tutorial, 7
dateutil package, 54
degree of a node, 13
demo function (NLTK modules), 206
dendogram of LinkedIn contacts clustered by

job title, 187

322 | Index

design documents (CouchDB), 53
inspecting in Futon, 55

Dice’s coefficient, 230
difference operations, 94
digraphs, 10
dirty records, 169
distance metrics (NLTK), 176

comparison of Jaccard and MASI distances
from two sets of items, 177

using to compare small sets of items, 176
distributions

illustrating degree of each node in graph,
13

document-centric data, analysis of, 49
documentation

Python, xvii
Twitter API, 5
Twitter social graph APIs, 90
viewing using pydoc, 4

documents
finding similar documents, 217–222

clustering posts with cosine similarity,
219–221

vector space models and cosine
similarity, 217–219

visualizing similarity with graphs, 222–
224

summarizing, 250–257
analysis of Luhn’s algorithm, 255–257
Tim O’Reilly Radar blog post (example),

252
Dojo Tree widget

producing JSON consumable by, 184
template for, 183
transforming data from FQL query for, 304

Dorling Cartograms, 193
mapping LinkedIn professional network

with, 198
DOT language, 14

E
easy_install, 2

installing twitter module, 4
edit distance, 175
ego graphs, 15
end of sentence (EOS) detection, 241, 242
entity extraction, 259
entity-centric analysis, 258–269

discovering interactions between entities,
262

quality of analytics, 267–269
Epicurus, 319
Erlang programming language, concurrency

support, 51
extended permissions (Facebook), 276
extraction, 244

entity extraction, 259
Extractor class, 121

F
Facebook, 271–311

authentication documentation, 276
developer principles and policies, 271
getting an OAuth 2.0 access token for

desktop app, 272–278
Open Graph protocol, 21
query APIs, 278–289

exploring Graph API one connection at a
time, 282–285

writing FQL queries, 286–289
total monthly visits as of August 2010, 271
visualizing data, 289

mutual friendships within groups, 301–
304

RGraphs visualization of entire network,
289–294

rotating tag cloud visualization of wall
data, 309–311

spreadsheet visualization of entire
network, 298

Sunburst visualization of entire network,
296

Where Have My Friends All Gone? (data-
driven game), 304–309

Facebook Query Language (see FQL)
facebook-python-sdk, installing, 282
fail whale, 88
false negatives (FN), 268
false positives (FP), 268
feedparser module, 245
findall(), 11
FOAF (Friend of a Friend), 20
folksonomy, 144
Food Network, 35
forward chaining, 317
FQL (Facebook Query Language), 278

Index | 323

encapsulating FQL queries with small
Python class, 287

queries to gather data for RGraph, 291
query to get names, current locations, and

hometowns of friends, 304
writing queries, 286–289

encapsulating FQL queries with Python
class, 287

multiquery, 286
frequency analysis, 9

map/reduce-inspired, using CouchDB, 55–
67

frequency by date/time range, 56–60
frequency by sender and recipient, 60

performing on Twitter data, using NLTK,
9

TF-IDF (term frequency-inverse document
frequency), 209–216

querying Buzz data, 215
tweet entities sorted by frequency, 129

frequency distribution
terms appearing in sample of Buzz data,

208
unigrams and bigrams in a text, 228

Friend of a Friend (FOAF), 20
friend/follower metrics, 96

calculating Twitterer’s most popular
follower, 105

crawling their connections, 103
exporting Redis data to NetworkX for graph

analysis, 108–110
finding cliques, 110–113
finding common friends/followers for

multiple Twitterers, 102
finding tweet entities that are also friends,

131
friendship analysis, Facebook network

FQL queries to gather data for RGraph
visualization, 291

harvesting data for JIT’s RGraph
visualization, 292

visualizing mutual friendships within
groups, 301–304

Where Have My Friends All Gone? (data-
driven game), 304–309

full-text indexing
Lucene library, 63
using couchdb-lucene, 64–67

Futon

inspecting design documents in, 55
viewing CouchDB document collection and

individual document, 49
FuXi, 317

results of running from command line on
knowledge base, 318

G
GAE (Google App Engine), 272
generator functions, 55
geo microformat, 20, 30–34

extracting geo data from MapQuest Local
page, 31

plotting data via microform.at and Google
Maps, 32

sample markup, 30
geographically clustering LinkedIn network,

193–199
mapping network with Dorling Cartograms,

198
mapping network with Google Earth, 194–

197
geopy module, 194
getmail, 80
GitHub repository, xv
Gmail, 202, 231

accessing using OAuth, 232
fetching and parsing email messages, 233–

235
Google

Social Graph API, 30
total monthly visits as of August 2010, 271
Xoauth implementation of OAuth, 232

Google App Engine (GAE), 272
Google Buzz, 201

bigram analysis, 224–231
collocations, contingency tables, and

scoring functions, 228–231
clustering posts with cosine similarity, 219–

221
combining aspects of Twitter and blogs,

202
frequency distribution of terms in small data

sample, 208
hacking data using NLTK, 206
harvesting data from, 204
querying data with TF-IDF, 215–216
visualizing similarity with graphs, 222

324 | Index

Google Earth, mapping your LinkedIn
network, 194–197

Google Maps, 33
Graph API (Facebook), 278

documentation, 284
exploring one connection at a time, 282–

285
Graph Your Inbox Chrome Extension, 81
GraphAPI class, methods, 282
graphs

creating graph describing retweet data, 12
creating graph of nodes and edges using

NetworkX, 3
interactive 3D graph visualization, 116
visualizing similarity with, 221

Graphviz
downloading and installing, 14
online documentation, 15
showing connectedness of #JustinBieber

and #TeaParty search results,
165

Twitter search results rendered in circular
layout, 15

greedy heuristic for clustering, 178
group_level argument, db.view function, 59
GVedit, 15

H
Hadoop, 237
hashtags

counting hashtag entities in tweets, 144
frequency of, in tweets containing

#JustinBieber or #TeaParty, 153
hCalendar microformat, 20
hCard microformat, 20
help function (NLTK modules), 206
hierarchical clustering, 185
HierarchicalClustering class,

setLinkageMethod method, 187
histogram showing popularity of each friend in

Facebook network, 298
homographs, 240
hRecipe microformat, 20

parsed results for a recipe, 37
parsing data for a recipe, 35

hResume microformat, 20
hReview microformat

distribution for recipe review data, 39
parsing data for recipe review, 37

sample results for recipe reviews, 39
HTML

pages and hyperlinks (Web 1.0), 314
sample geo markup, 30
semantic markup, 21
template displaying WP-Columbus tag

cloud, 161
HTTP, 314

errors in Twitter, 88
methods, acting upon URIs, 49

httplib module, 63
hypertext, 314

I
identity consolidation, 30
IDF (inverse document frequency), 209

(see also TF-IDF)
calculation of, 211

idf function, 215
IETF OAuth 2.0 protocol, 86
IMAP (Internet Message Access Protocol), 80

connecting to, using OAuth, 232
constructing an IMAP query, 233

imaplib, 233
ImportError, 3
indexing function, JavaScript-based, 66
inference

application to machine knowledge, 317
in logic-based programming languages and

RDF, 315
influence, measuring for Twitter users, 103–

108
calculating Twitterer’s most popular

followers, 105
crawling friends/followers connections,

104
Infochimps, Strong Links API, 114–116
information retrieval industry, 236
information retrieval theory (see IR theory)
intelligent clustering, 183
interactive 3D graph visualization, 116
interactive 3D tag clouds for tweet entities co-

occurring with #JustinBieber and
#TeaParty, 161

interpreter, Python (IPython), 17
intersection operations, 94

overlap between entities of #TeaParty and
#JustinBieber tweets, 156

IR (information retrieval) theory, 209

Index | 325

finding similar documents using cosine
similarity, 219–221

introduction to TF-IDF, 209–215
querying Buzz data with TF-IDF, 215–216
vector space models and cosine similarity,

217
irrational numbers, 95

J
Jaccard distance

comparing with MASI distance for two sets
of items, 177

defined, 176
Jaccard Index, 226

defined, 230
Java-based search engine library (Lucene), 63
JavaScript

indexing function based on, 66
map/reduce functions in CouchDB, 53

JavaScript InfoVis Toolkit (see JIT)
JavaScript Object Notation (see JSON)
JIT (JavaScript InfoVis Toolkit), 289

RGraph visualization of Facebook network,
290–294

Sunburst visualization of Facebook
network, 296

job titles
clustering contacts by, 172

common similarity metrics for
clustering, 174

greedy approach to clustering, 178
hierarchical clustering, 185
k-means clustering, 187
standardizing and counting job titles,

169
lack of standardization in, 170

JSON
consumable by Dojo’s Tree widget,

producing, 184
converting mbox data to, 45
data produced for consumption by Dojo

Tree widget, 304
example user object represented as JSON

data, 100
pretty-printing Twitter data as, 5
sample output from script converting mbox

data to JSON, 47
script loading data into CouchDB, 51

json package, 5

JVM (Java Virtual Machine), 63
jwz threading, 67

K
k-means clustering, 187
keyword search capabilities in applications, 63
KMeansClustering class

feeding geocoordinates into, 194
getclusters method, 196

KML (Keyhole Markup Language), 33
constructing to feed into Google Earth, 194

L
Levenshtein distance, 175
lexical diversity, 7
likelihood ratio, 230
LinkedIn, 167–199

clustering contacts by job title, 172–188
common similarity metrics for

clustering, 174–177
hierarchical clustering, 185
k-means clustering, 187
standardizing and counting job titles,

172–174
standardizing company names, 169
using greedy approach, 178–185

developer signup and getting API
credentials, 188

fetching extended profile information, 188–
193

geographically clustering your network,
193–199

mapping network with Dorling
Cartograms, 198

mapping, using Google Earth, 194–197
job titles, problems with, 170
motivation for clustering data, 168
normalization of company suffixes from

address book data, 169
linkedin module, 188
Linux/Unix environment, xvi
list comprehensions in Python, 6
logic-based programming languages, 315
Lucene, 63

(see also couchdb-lucene)
techniques for scoring documents, 67

Luhn, H.P., 250
analysis of summarization algorithm, 256

326 | Index

M
mail events, visualizing with SIMILE Timeline,

77–80
mail headers, extended, viewing through

clients’ options, 44
Mail Trends project, 67
mailboxes, 41–82

analyzing your own mail data, 80
Graph Your Inbox Chrome Extension,

81
email analysis with mbox and CouchDB,

48–67
bulk loading documents into CouchDB,

51
couchdb-lucene, full-text indexing, 63–

67
map/reduce-inspired frequency analysis,

55–61
sensible sorting of documents, 53–55
sorting documents by value, 61

mbox, 42–48
threading conversations together, 67–77

robust approach, using mbox data, 73–
77

visualizing mail events with SIMILE
Timeline, 77–80

map/reduce
CouchDB capabilities, 49
counting messages by sender and recipient,

60
counting number of messages written by

date, 56–60
definition of CouchDB functionality, 52
mapper that tokenizes documents, 63
mapper using Python to map documents by

datetime stamps, 54
mapping

LinkedIn professional network with Dorling
Cartograms, 198

LinkedIn professional network with Google
Earth, 194–197

MapQuest Local page, extracting geo data
from, 31

MASI distance
comparing with Jaccard distance for two sets

of items, 177
defined, 176

matching, approximate, 169
mavens, 103

mbox, 41, 42–48
(see also mailboxes)
converting mbox data into JSON structure,

45
creating discussion threads from data using

jwz threading, 67
slice of a sample file, 42

Measuring Agreement on Set Valued Items (see
MASI distance)

message threading algorithm (jwz), 67
metadata

delivered in response to OGP query, 280
RDFa, injection into web page, 278

Microdata initiative, 20
microformats, 19

geo, 30–34
extracting geo data from Wikipedia

article and MapQuest Local
page, 30

plotting geo data via microform.at and
Google Maps, 32

hRecipe, 35–37
hReview data for recipe reviews, 37–39
popular, for embedding structured data into

web pages, 20
semantic markup, 21
XFN, 20

using to explore social connections, 22–
30

multiquery (FQL), 286

N
n-gram similarity, 175
n-grams, 224

defined, 175
n-squared problem, 168
natural language processing (see NLP)
Natural Language Toolkit (see NLTK)
natural numbers, 95
nested query (FQL), 286
NetworkX

building graph describing retweet data, 12–
14

exporting Redis friend/follower data to for
graph analysis, 108

finding cliques in Twitter friendship data,
111

installing, 2
using to create graph of nodes and edges, 3

Index | 327

*nix (Linux/Unix) environment, xvi
NLP (natural language processing), 239–270

entity-centric analysis, 258–269
quality of analytics, 267

sentence detection in blogs with NLTK,
245–249

summarizing documents, 250–257
analysis of Luhn’s algorithm, 256

syntax and semantics, 240
thought exercise, 241
typical NLP pipeline with NLTK, 242–245

NLTK (Natural Language Toolkit), 8, 202
computing bigrams in the interpreter, 175
documentation, 8
downloading stopwords data, 208
extracting entities from a text, 259
hacking Google Buzz data with, 206
performing basic frequency analysis with, 9
performing NLP with, 242–245
sentence detection in blogs, 245–249
using to compute bigrams and collocations,

225
nltk.batch_ne_chunk function, 260
nltk.cluster.util.cosine_distance function, 219
nltk.metrics.association module, 175
nltk.metrics.associations, 230
nltk.metrics.BigramAssocMeasures.jaccard,

226
nltk.stem module, 216
nltk.Text.collocations demo function, 225
normalization of company suffixes from

address book data, 169
Notation3 (N3), 317
numpy module, 3

O
OAuth

access to IMAP and SMTP in Gmail, 232
getting access token for Facebook desktop

application, 272–278
IETF OAuth 2.0 protocol, summary of

major steps, 86
template extracting LinkedIn OAuth verifier

and displaying it, 192
using to authenticate at Twitter and grab

friendship data, 88
versions, and Twitter support, 86

object types supported by Facebook Graph API,
278

official Python tutorial, xvii
OGP (see Open Graph protocol)
ontologies, 315
open authorization (see OAuth)
Open Graph protocol (OGP), 21, 278

querying for programming groups, 282
sample results from query, 284

sample RDFa for, 279
sample response for query with optional

metadata, 280
sample response to OGP query, 280

open-world versus closed-world assumptions,
316

overfitting training data, 269
OWL, 316

P
Pareto principle (80-20 rule), xiii, 300
part-of-speech (POS) tagging, 243
Penn Treebank Project, 244
Penn Treebank Tags, full listing of, 259
pickling your data, 8
PMI (Pointwise Mutual Information), 231
POP3 (Post Office Protocol version 3), 80
POS (part-of-speech) tagging, 243
Power Law, 13
precision, 267

calculating, 268
privacy controls, Facebook data, 278
profiles

Facebook users, accessing data from, 276
fetching extended profile information for

LinkedIn members, 188–193
Prolog logic-based programming language,

315
protocols, used on Internet, 314
Protovis, 221

graph visualizations of similarity in Google
Buzz data, 222

mapping professional network with Dorling
Cartograms, 198

redial tree layout and dendogram of
LinkedIn contacts, 187

PunktSentenceTokenizer, 248
pydoc, running from terminal, 4
PyGraphviz, 14
Python, xvii

couchdb client module, 51

328 | Index

encapsulating FQL queries with Python
class, 287

inferencing about open world with FuXi,
317

installing development tools, 1
list comprehension, 6
map/reduce functions for CouchDB, 53
support for sets, 94
tutorial overview, 3

Python SDK for the Graph API, 282

Q
quicksort algorithm, 61
quopri module, 47
quoted-printable text, decoding, 47

R
radial tree layout, LinkedIn contacts clustered

by job title, 187
rate-throttling limits (LinkedIn), 193
rational numbers, 95
raw frequency, 230
RDF (Resource Description Framework), 315

knowledge base expressed with Notation3,
317

open-world assumptions, 316
RDF Schema, 317
RDFa, 20

metadata, insertion into web page, 278
sample, for Open Graph protocol, 279

re module, 11
recall, 267
recipes and reviews in microformats, 35–39
Redis, 92

exporting data to NetworkX, 108
randomkey function, 103
resolving screen names from user ID values,

114
set operations, 94
sinterstore function, 102

reduction functions, 52
regular expressions, using to find retweets, 11
rereduce, 59, 128
REST-based interface, CouchDB, 49
RESTful APIs

Google Buzz, 204
mapping to twitter module, 5
Twitter, 84

RESTful Web services, 49
results query (FQL), 286
retweeting, 10
retweets

counting for a Twitterer, 138
finding tweets most often retweeted, 142
finding using regular expressions, 11
graph describing who retweeted whom, 12
most frequent entities appearing in, 140
most frequent retweeters of #JustinBieber,

155
most frequent retweeters of #TeaParty,

154
RGraphs, visualizing Facebook network, 290–

294
Rich Internet Applications (RIAs), 314
rotating tag cloud, visualizing Facebook wall

data as, 309–311
RT (retweet) token, 10
rubhub, 23

S
sample error, 267
scalable clustering, 181
scalable force directed placement (SFDP), 165
scoring functions, 229
screen names, resolving from user IDs, 93, 99
search API (Twitter), 5
search engines, 236
semantic markup, 21
semantic web, 313–319

defined, 314
inferencing about open world with FuXi,

317
open-world versus closed-world

assumptions, 316
social web as catalyst for, 319

semantics, defined, 313
semi-standardized relational data, 169
sentence detection, 241

in blogs, using NLTK, 245–249
sentence tokenizer, 248
set operations

intersection of entities in #TeaParty and
#JustinBieber tweets, 156

Redis native functions for, 94
sample, for Twitter friends and followers,

94
set theory, invention by Georg Cantor, 95

Index | 329

SFDP (scalable force directed placement),
Graphviz, 165

similarity metrics
common, for clustering, 174
cosine similarity, 217

clustering posts using, 219–221
limitations of, 236
theory behind vector space models and,

217
most frequent entities co-occurring with

#JustinBieber and #TeaParty
tweets, 149

visualizing similarity with graphs, 221
similarity, calculating by computing common

friends/followers, 102
SIMILE Timeline, 77–80

expected data format, 77
online demonstrations, 79

social graph APIs (Twitter), online
documentation, 90

social web, 314
SocialGraph Node Mapper, 30
sorting

documents by value, 61
documents in CouchDB, 53

split method, using to tokenize text, 206, 237
spreadsheets, visualizing Facebook network

data, 298
statistical models processing natural language,

269
stemming verbs, 216
stopwords

downloading NLTK stopword data, 208
filtering out before document

summarization, 256
streaming API (Twitter), 123
Strong Links API, 114–116
student’s t-score, 231
subject-verb-object triples, 261, 315
summarizing documents, 250–257

analysis of Luhn’s algorithm, 256
Tim O’Reilly Radar blog post (example),

252
summingReducer function, 59, 128
Sunburst visualizations, 296

harvesting and manipulating data for, 296
supervised learning algorithm, 269
syntax and semantics, 240

T
tag clouds

crafting, design decisions in, 161
interactive 3D tag cloud for tweet entities co-

occurring with #JustinBieber and
#TeaParty, 161

sample HTML template displaying WP-
Columbus tag cloud, 161

using to visualize large number of tweets,
158

visualizing Facebook wall data as rotating
tag cloud, 309–311

weighting tags in, 161
term frequency-inverse document frequency

(see TF-IDF)
text mining, 201–237

bigrams, 224–231
collocations, contingency tables, and

scoring functions, 228
data hacking with NLTK, 206
finding similar documents, 217–222

clustering posts with cosine similarity,
219–221

theory behind vector space models and
cosine similarity, 217

visualizing similarity with graph
visualizations, 221

frequency distribution for terms in sample of
Buzz data, 208

Google Buzz, combining aspects of Twitter
and blogs, 202

harvesting Google Buzz data, 204
introduction to TF-IDF, 209–215
limitations of TF-IDF and cosine similarity,

236
querying Buzz data with TF-IDF, 215–216
tapping into Gmail, 231–235

fetching and parsing email messages,
233–235

text-based indexing using couchdb-lucene, 63
TF-IDF, 209–216

computing cosine similarity of documents
represented as term vectors, 219

introduction to, 209–215
calculations involved in sample queries,

214
running on sample Buzz data, 212
summarized values for sample queries,

214

330 | Index

limitations of, 236
querying Google Buzz data, 215–216

thread pools, 70
using to maximize read throughput from

CouchDB, 70
threading conversations together

from mbox data, 67–77
thread pool maximizing read throughput

from CouchDB, 70
tweet discussion threads, 135–138

tokenization
definition and example of, 243
Facebook Wall data for tag cloud

visualization, 311
mapper that tokenizes documents, 63
NLTK tokenizers, 248
using split method, 206, 237

TreebankWord Tokenizer, 248
trends, Twitter search, 5
TrigramAssociationMeasures class, 175
triples, 261, 315
true negatives (TN), 268
true positives (TP), 268
Turing Test, 240
tutorials

Getting Started with Timeline, 79
official Python tutorial, 3
Tutorial on Clustering Algorithms, 188

tweets, 4, 119–166
analyzing, one entity at a time, 123
analyzing, questions for, 125
counting hashtag entities in, 144
counting retweets for a Twitterer, 138
entities sorted by frequency from harvested

tweets, 129
extracting entities and performing

frequency analysis, 126
finding tweets most often retweeted, 142
information about latent social networks,

147
harvesting tweets for a topic, 147
hashtags in tweets with #JustinBieber or

#TeaParty, 153
most frequent entities in tweets

containing #JustinBieber, 151
most frequent entities in tweets

containing #TeaParty, 149
most frequent retweeters of

#JustinBieber, 155

most frequent retweeters of #TeaParty,
154

overlap between entities of #TeaParty
and #JustinBieber, 156

querying data with couchdb-lucene, 133
reconstructing discussion threads, 135
retweeting, 10
visualizing community structures in search

results, 162–166
visualizing large number of, 158

using tag clouds, 158
Twitter, 4, 83

collecting data from, 88
authenticating with OAuth and grabbing

friendship data, 88
basic friend/follower metrics, 96
example user object represented as JSON

data, 100
finding common friends/followers for

multiple users, 102
measure relative influence of users, 103–

108
resolving user screen names from IDs,

99
set operations for friends and followers,

94
using Redis, 92

exploring the API, 4–7
printing data as JSON, 5
retrieving search trends, 5

extracting relationships from tweets, 10
frequency analysis of tweets, 9
friendship analysis, 108–117

detecting and analyzing cliques, 110–
113

interactive 3D graph visualization of
clique data, 116

using Infochimps Strong Links API, 114–
116

graph describing who retweeted whom, 12
lexical diversity for tweets, 7
NLTK, using for frequency analysis, 9
OAuth, 86
RESTful API, 84
visualizing graphs of tweet data, 14–15

Twitter class
instantiating and invoking methods on, 5
viewing documentation for, 4

twitter module, installing with easy_install, 4

Index | 331

twitter.oauth module, 90
TwitterHTTPError exceptions, 88
twitter_search.trends(), 5
twitter_text package, 121

U
Ubigraph, 116
UnicodeDecodeError, 45
unigrams, 228
union operations, 94
URIs, HTTP methods acting upon, 49
URLs

resolving variations in, 30
standardizing and resolving in identity

consolidation, 30
user information

resolving screen names from IDs, 99
Twitter usernames, 11

user object represented as JSON data
(example), 100

V
vector space models, 217

example vector plotted in 3D space, 218
vector, defined, 218
versions, Python, 1
views (CouchDB), 53, 55
visualization tools, xvii
visualizations

constructing friendship graphs from Twitter
data, 108–117

clique detection and analysis, 110–113
Infochimps Strong Links API, 114–116
interactive 3D graph, 116

Facebook data, 289
visualizing mutual friendships within

groups, 301–304
visualizing with RGraphs, 289–294
visualizing with spreadsheets, 298
visualizing with Sunburst, 296
wall data visualized as rotating tag cloud,

309–311
Where Have My Friends Gone? (data-

driven game), 304–309
geographical clustering of LinkedIn

network, 193–198
mapping network with Dorling

Cartograms, 198

mapping network with Google Earth,
194–197

Graph Your Inbox Chrome extension, 81
large number of tweets, 158

community structures in Twitter search
results, 162–166

using tag clouds, 158–162
mail events, using SIMILE Timeline, 77–80
similarity, visualizing with graphs, 221
tweet graphs, 14–16

visualizing retweets, using Protovis, 16

W
wall data (Facebook), visualizing as rotating tag

cloud, 309–311
web page for this book, xix
weighting tags in tag clouds, 161
WhitespaceTokenizer, 248
Wikipedia articles with geo markup, 32
Windows systems

ActivePython, 1
couchdb-lucene service wrapper, 64
DOT language output for Graphviz, 165
GVedit application, 15
installing easy_install, 2

WolframAlpha, entity analysis with, 258
word tokenizer, 248
WP-Cumulus tag cloud, 158, 309

sample HTML template displaying, 161

X
XFN (XHTML Friends Network), 20, 22–30

example markup, 22
pseudocode for breadth-first search, 24
scraping XFN content from a web page, 23
using breadth-first search to crawl XFN

links, 25
XHTML, 19

(see also XFN)
semantic markup versus, 21

Xoauth, 232
xoauth.py command-line utility, 232

Z
Zipf’s law, 13

frequency distribution of words in a corpus,
208

332 | Index

	Team rebOOk

